typedef struct _opl3_slot opl3_slot; typedef struct _opl3_channel opl3_channel; typedef struct _opl3_chip opl3_chip; struct _opl3_slot { opl3_channel *channel; opl3_chip *chip; int16_t out; int16_t fbmod; int16_t *mod; int16_t prout; uint16_t eg_rout; uint16_t eg_out; // uint8_t eg_inc; uint8_t eg_gen; // uint8_t eg_rate; uint8_t eg_ksl; uint8_t *trem; uint8_t reg_vib; uint8_t reg_type; uint8_t reg_ksr; uint8_t reg_mult; uint8_t reg_ksl; uint8_t reg_tl; uint8_t reg_ar; uint8_t reg_dr; uint8_t reg_sl; uint8_t reg_rr; uint8_t reg_wf; uint8_t key; uint8_t detrigger; uint8_t retrigger; uint32_t pg_reset; uint32_t pg_phase; uint16_t pg_phase_out; uint8_t slot_num; }; struct _opl3_channel { opl3_slot *slots[2]; opl3_channel *pair; opl3_chip *chip; int16_t *out[4]; int32_t level[2]; uint8_t chtype; uint16_t f_num; uint8_t block; uint8_t fb; uint8_t con; uint8_t alg; uint8_t ksv; uint8_t ch_num; }; struct _opl3_chip { opl3_channel *channel; opl3_slot *slot; uint16_t timer; uint64_t eg_timer; uint8_t eg_timerrem; uint8_t eg_state; uint8_t eg_add; uint8_t nts; uint8_t vibpos; uint8_t vibshift; uint8_t tremolo; uint8_t tremolopos; uint8_t tremoloshift; uint8_t n_voices; uint32_t noise; int16_t zeromod; int32_t mixbuff[4]; int32_t rateratio; int32_t samplecnt; int16_t oldsamples[2]; int16_t samples[2]; }; /* input: [0, 256), output: [0, 65536] */ #define OPL_SIN(x) ((int32_t)(sin((x) * M_PI / 512.0) * 65536.0)) #define RSM_FRAC 10 enum { ch_2op = 0, ch_4op = 1, ch_4op2 = 2 }; // Tables static const uint16_t logsinrom[256] = { 0x859, 0x6c3, 0x607, 0x58b, 0x52e, 0x4e4, 0x4a6, 0x471, 0x443, 0x41a, 0x3f5, 0x3d3, 0x3b5, 0x398, 0x37e, 0x365, 0x34e, 0x339, 0x324, 0x311, 0x2ff, 0x2ed, 0x2dc, 0x2cd, 0x2bd, 0x2af, 0x2a0, 0x293, 0x286, 0x279, 0x26d, 0x261, 0x256, 0x24b, 0x240, 0x236, 0x22c, 0x222, 0x218, 0x20f, 0x206, 0x1fd, 0x1f5, 0x1ec, 0x1e4, 0x1dc, 0x1d4, 0x1cd, 0x1c5, 0x1be, 0x1b7, 0x1b0, 0x1a9, 0x1a2, 0x19b, 0x195, 0x18f, 0x188, 0x182, 0x17c, 0x177, 0x171, 0x16b, 0x166, 0x160, 0x15b, 0x155, 0x150, 0x14b, 0x146, 0x141, 0x13c, 0x137, 0x133, 0x12e, 0x129, 0x125, 0x121, 0x11c, 0x118, 0x114, 0x10f, 0x10b, 0x107, 0x103, 0x0ff, 0x0fb, 0x0f8, 0x0f4, 0x0f0, 0x0ec, 0x0e9, 0x0e5, 0x0e2, 0x0de, 0x0db, 0x0d7, 0x0d4, 0x0d1, 0x0cd, 0x0ca, 0x0c7, 0x0c4, 0x0c1, 0x0be, 0x0bb, 0x0b8, 0x0b5, 0x0b2, 0x0af, 0x0ac, 0x0a9, 0x0a7, 0x0a4, 0x0a1, 0x09f, 0x09c, 0x099, 0x097, 0x094, 0x092, 0x08f, 0x08d, 0x08a, 0x088, 0x086, 0x083, 0x081, 0x07f, 0x07d, 0x07a, 0x078, 0x076, 0x074, 0x072, 0x070, 0x06e, 0x06c, 0x06a, 0x068, 0x066, 0x064, 0x062, 0x060, 0x05e, 0x05c, 0x05b, 0x059, 0x057, 0x055, 0x053, 0x052, 0x050, 0x04e, 0x04d, 0x04b, 0x04a, 0x048, 0x046, 0x045, 0x043, 0x042, 0x040, 0x03f, 0x03e, 0x03c, 0x03b, 0x039, 0x038, 0x037, 0x035, 0x034, 0x033, 0x031, 0x030, 0x02f, 0x02e, 0x02d, 0x02b, 0x02a, 0x029, 0x028, 0x027, 0x026, 0x025, 0x024, 0x023, 0x022, 0x021, 0x020, 0x01f, 0x01e, 0x01d, 0x01c, 0x01b, 0x01a, 0x019, 0x018, 0x017, 0x017, 0x016, 0x015, 0x014, 0x014, 0x013, 0x012, 0x011, 0x011, 0x010, 0x00f, 0x00f, 0x00e, 0x00d, 0x00d, 0x00c, 0x00c, 0x00b, 0x00a, 0x00a, 0x009, 0x009, 0x008, 0x008, 0x007, 0x007, 0x007, 0x006, 0x006, 0x005, 0x005, 0x005, 0x004, 0x004, 0x004, 0x003, 0x003, 0x003, 0x002, 0x002, 0x002, 0x002, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000 }; static const uint16_t exprom[256] = { 0x7fa, 0x7f5, 0x7ef, 0x7ea, 0x7e4, 0x7df, 0x7da, 0x7d4, 0x7cf, 0x7c9, 0x7c4, 0x7bf, 0x7b9, 0x7b4, 0x7ae, 0x7a9, 0x7a4, 0x79f, 0x799, 0x794, 0x78f, 0x78a, 0x784, 0x77f, 0x77a, 0x775, 0x770, 0x76a, 0x765, 0x760, 0x75b, 0x756, 0x751, 0x74c, 0x747, 0x742, 0x73d, 0x738, 0x733, 0x72e, 0x729, 0x724, 0x71f, 0x71a, 0x715, 0x710, 0x70b, 0x706, 0x702, 0x6fd, 0x6f8, 0x6f3, 0x6ee, 0x6e9, 0x6e5, 0x6e0, 0x6db, 0x6d6, 0x6d2, 0x6cd, 0x6c8, 0x6c4, 0x6bf, 0x6ba, 0x6b5, 0x6b1, 0x6ac, 0x6a8, 0x6a3, 0x69e, 0x69a, 0x695, 0x691, 0x68c, 0x688, 0x683, 0x67f, 0x67a, 0x676, 0x671, 0x66d, 0x668, 0x664, 0x65f, 0x65b, 0x657, 0x652, 0x64e, 0x649, 0x645, 0x641, 0x63c, 0x638, 0x634, 0x630, 0x62b, 0x627, 0x623, 0x61e, 0x61a, 0x616, 0x612, 0x60e, 0x609, 0x605, 0x601, 0x5fd, 0x5f9, 0x5f5, 0x5f0, 0x5ec, 0x5e8, 0x5e4, 0x5e0, 0x5dc, 0x5d8, 0x5d4, 0x5d0, 0x5cc, 0x5c8, 0x5c4, 0x5c0, 0x5bc, 0x5b8, 0x5b4, 0x5b0, 0x5ac, 0x5a8, 0x5a4, 0x5a0, 0x59c, 0x599, 0x595, 0x591, 0x58d, 0x589, 0x585, 0x581, 0x57e, 0x57a, 0x576, 0x572, 0x56f, 0x56b, 0x567, 0x563, 0x560, 0x55c, 0x558, 0x554, 0x551, 0x54d, 0x549, 0x546, 0x542, 0x53e, 0x53b, 0x537, 0x534, 0x530, 0x52c, 0x529, 0x525, 0x522, 0x51e, 0x51b, 0x517, 0x514, 0x510, 0x50c, 0x509, 0x506, 0x502, 0x4ff, 0x4fb, 0x4f8, 0x4f4, 0x4f1, 0x4ed, 0x4ea, 0x4e7, 0x4e3, 0x4e0, 0x4dc, 0x4d9, 0x4d6, 0x4d2, 0x4cf, 0x4cc, 0x4c8, 0x4c5, 0x4c2, 0x4be, 0x4bb, 0x4b8, 0x4b5, 0x4b1, 0x4ae, 0x4ab, 0x4a8, 0x4a4, 0x4a1, 0x49e, 0x49b, 0x498, 0x494, 0x491, 0x48e, 0x48b, 0x488, 0x485, 0x482, 0x47e, 0x47b, 0x478, 0x475, 0x472, 0x46f, 0x46c, 0x469, 0x466, 0x463, 0x460, 0x45d, 0x45a, 0x457, 0x454, 0x451, 0x44e, 0x44b, 0x448, 0x445, 0x442, 0x43f, 0x43c, 0x439, 0x436, 0x433, 0x430, 0x42d, 0x42a, 0x428, 0x425, 0x422, 0x41f, 0x41c, 0x419, 0x416, 0x414, 0x411, 0x40e, 0x40b, 0x408, 0x406, 0x403, 0x400 }; static const uint8_t mt[16] = { 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 20, 24, 24, 30, 30 }; static const uint8_t kslrom[16] = { 0, 32, 40, 45, 48, 51, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64 }; static const uint8_t kslshift[4] = { 8, 1, 2, 0 }; static const uint8_t eg_incstep[4][4] = { { 0, 0, 0, 0 }, { 1, 0, 0, 0 }, { 1, 0, 1, 0 }, { 1, 1, 1, 0 } }; // Envelope generator typedef int16_t(*envelope_sinfunc)(uint16_t phase, uint16_t envelope); typedef void(*envelope_genfunc)(opl3_slot *slott); int16_t OPL3_EnvelopeCalcExp(uint32_t level) { if (level > 0x1fff) { level = 0x1fff; } return (exprom[level & 0xff] << 1) >> (level >> 8); } int16_t OPL3_EnvelopeCalcSin0(uint16_t phase, uint16_t envelope) { uint16_t out = 0; uint16_t neg = 0; phase &= 0x3ff; if (phase & 0x200) { neg = 0xffff; } if (phase & 0x100) { out = logsinrom[(phase & 0xff) ^ 0xff]; } else { out = logsinrom[phase & 0xff]; } return OPL3_EnvelopeCalcExp(out + (envelope << 3)) ^ neg; } int16_t OPL3_EnvelopeCalcSin1(uint16_t phase, uint16_t envelope) { uint16_t out = 0; phase &= 0x3ff; if (phase & 0x200) { out = 0x1000; } else if (phase & 0x100) { out = logsinrom[(phase & 0xff) ^ 0xff]; } else { out = logsinrom[phase & 0xff]; } return OPL3_EnvelopeCalcExp(out + (envelope << 3)); } int16_t OPL3_EnvelopeCalcSin2(uint16_t phase, uint16_t envelope) { uint16_t out = 0; phase &= 0x3ff; if (phase & 0x100) { out = logsinrom[(phase & 0xff) ^ 0xff]; } else { out = logsinrom[phase & 0xff]; } return OPL3_EnvelopeCalcExp(out + (envelope << 3)); } int16_t OPL3_EnvelopeCalcSin3(uint16_t phase, uint16_t envelope) { uint16_t out = 0; phase &= 0x3ff; if (phase & 0x100) { out = 0x1000; } else { out = logsinrom[phase & 0xff]; } return OPL3_EnvelopeCalcExp(out + (envelope << 3)); } int16_t OPL3_EnvelopeCalcSin4(uint16_t phase, uint16_t envelope) { uint16_t out = 0; uint16_t neg = 0; phase &= 0x3ff; if ((phase & 0x300) == 0x100) { neg = 0xffff; } if (phase & 0x200) { out = 0x1000; } else if (phase & 0x80) { out = logsinrom[((phase ^ 0xff) << 1) & 0xff]; } else { out = logsinrom[(phase << 1) & 0xff]; } return OPL3_EnvelopeCalcExp(out + (envelope << 3)) ^ neg; } int16_t OPL3_EnvelopeCalcSin5(uint16_t phase, uint16_t envelope) { uint16_t out = 0; phase &= 0x3ff; if (phase & 0x200) { out = 0x1000; } else if (phase & 0x80) { out = logsinrom[((phase ^ 0xff) << 1) & 0xff]; } else { out = logsinrom[(phase << 1) & 0xff]; } return OPL3_EnvelopeCalcExp(out + (envelope << 3)); } int16_t OPL3_EnvelopeCalcSin6(uint16_t phase, uint16_t envelope) { uint16_t neg = 0; phase &= 0x3ff; if (phase & 0x200) { neg = 0xffff; } return OPL3_EnvelopeCalcExp(envelope << 3) ^ neg; } int16_t OPL3_EnvelopeCalcSin7(uint16_t phase, uint16_t envelope) { uint16_t out = 0; uint16_t neg = 0; phase &= 0x3ff; if (phase & 0x200) { neg = 0xffff; phase = (phase & 0x1ff) ^ 0x1ff; } out = phase << 3; return OPL3_EnvelopeCalcExp(out + (envelope << 3)) ^ neg; } static const envelope_sinfunc envelope_sin[8] = { OPL3_EnvelopeCalcSin0, OPL3_EnvelopeCalcSin1, OPL3_EnvelopeCalcSin2, OPL3_EnvelopeCalcSin3, OPL3_EnvelopeCalcSin4, OPL3_EnvelopeCalcSin5, OPL3_EnvelopeCalcSin6, OPL3_EnvelopeCalcSin7 }; enum envelope_gen_num { envelope_gen_num_attack = 0, envelope_gen_num_decay = 1, envelope_gen_num_sustain = 2, envelope_gen_num_release = 3 }; void OPL3_EnvelopeCalc(opl3_slot *slot) { uint8_t nonzero; uint8_t rate; uint8_t rate_hi; uint8_t rate_lo; uint8_t reg_rate = 0; uint8_t ks; uint8_t eg_shift, shift; uint16_t eg_rout; int16_t eg_inc; uint8_t eg_off; uint8_t reset = 0; if(slot->retrigger) { slot->eg_rout = 0x1ff; } slot->eg_out = slot->eg_rout + (slot->reg_tl << 2) + (slot->eg_ksl >> kslshift[slot->reg_ksl]) + *slot->trem; if (slot->key && slot->eg_gen == envelope_gen_num_release) { reset = 1; reg_rate = slot->reg_ar; } else { switch (slot->eg_gen) { case envelope_gen_num_attack: reg_rate = slot->reg_ar; break; case envelope_gen_num_decay: reg_rate = slot->reg_dr; break; case envelope_gen_num_sustain: if (!slot->reg_type) { reg_rate = slot->reg_rr; } break; case envelope_gen_num_release: reg_rate = slot->reg_rr; break; } } slot->pg_reset = reset; ks = slot->channel->ksv >> ((slot->reg_ksr ^ 1) << 1); nonzero = (reg_rate != 0); rate = ks + (reg_rate << 2); rate_hi = rate >> 2; rate_lo = rate & 0x03; if (rate_hi & 0x10) { rate_hi = 0x0f; } eg_shift = rate_hi + slot->chip->eg_add; shift = 0; if (nonzero) { if (rate_hi < 12) { if (slot->chip->eg_state) { switch (eg_shift) { case 12: shift = 1; break; case 13: shift = (rate_lo >> 1) & 0x01; break; case 14: shift = rate_lo & 0x01; break; default: break; } } } else { shift = (rate_hi & 0x03) + eg_incstep[rate_lo][slot->chip->timer & 0x03]; if (shift & 0x04) { shift = 0x03; } if (!shift) { shift = slot->chip->eg_state; } } } eg_rout = slot->eg_rout; eg_inc = 0; eg_off = 0; /* Instant attack */ if (reset && rate_hi == 0x0f) { eg_rout = 0x00; } /* Envelope off */ if ((slot->eg_rout & 0x1f8) == 0x1f8) { eg_off = 1; } if (slot->eg_gen != envelope_gen_num_attack && !reset && eg_off) { eg_rout = 0x1ff; } switch (slot->eg_gen) { case envelope_gen_num_attack: if (!(slot->eg_rout)) { slot->eg_gen = envelope_gen_num_decay; } else if (slot->key && shift > 0 && rate_hi != 0x0f) { eg_inc = ~slot->eg_rout >> (4 - shift); } break; case envelope_gen_num_decay: if ((slot->eg_rout >> 4) == slot->reg_sl) { slot->eg_gen = envelope_gen_num_sustain; } else if (!eg_off && !reset && shift > 0) { eg_inc = 1 << (shift - 1); } break; case envelope_gen_num_sustain: case envelope_gen_num_release: if (!eg_off && !reset && shift > 0) { eg_inc = 1 << (shift - 1); } break; } slot->eg_rout = (eg_rout + eg_inc) & 0x1ff; /* Key off */ if (reset) { slot->eg_gen = envelope_gen_num_attack; } if (!(slot->key)) { slot->eg_gen = envelope_gen_num_release; } slot->detrigger = 0; slot->retrigger = 0; } void OPL3_EnvelopeUpdateKSL(opl3_slot *slot) { int16_t ksl = (kslrom[slot->channel->f_num >> 6] << 2) - ((0x08 - slot->channel->block) << 5); if (ksl < 0) { ksl = 0; } slot->eg_ksl = (uint8_t)ksl; } void OPL3_EnvelopeKeyOn(opl3_slot *slot) { slot->key = 0x01; if(slot->detrigger) { slot->eg_gen = envelope_gen_num_release; // slot->eg_rout = 0x1ff; // slot->eg_out = slot->eg_rout = 0x1ff; slot->detrigger = 0; } slot->retrigger = 1; } void OPL3_EnvelopeKeyOff(opl3_slot *slot) { slot->key = 0x00; slot->detrigger = 1; slot->retrigger = 0; } void OPL3_PhaseGenerate(opl3_slot *slot) { opl3_chip *chip; uint16_t f_num; uint32_t basefreq; uint16_t phase; chip = slot->chip; f_num = slot->channel->f_num; if (slot->reg_vib) { int8_t range; uint8_t vibpos; range = (f_num >> 7) & 7; vibpos = slot->chip->vibpos; if (!(vibpos & 3)) { range = 0; } else if (vibpos & 1) { range >>= 1; } range >>= slot->chip->vibshift; if (vibpos & 4) { range = -range; } f_num += range; } basefreq = (f_num << slot->channel->block) >> 1; phase = (uint16_t)(slot->pg_phase >> 9); if (slot->pg_reset) { slot->pg_phase = 0; } slot->pg_phase += (basefreq * mt[slot->reg_mult]) >> 1; slot->pg_phase_out = phase; } void OPL3_SlotGenerate(opl3_slot *slot) { slot->out = envelope_sin[slot->reg_wf](slot->pg_phase_out + *slot->mod, slot->eg_out); } void OPL3_SlotCalcFB(opl3_slot *slot) { if (slot->channel->fb != 0x00) { slot->fbmod = (slot->prout + slot->out) >> (0x09 - slot->channel->fb); } else { slot->fbmod = 0; } slot->prout = slot->out; } void OPL3_ProcessSlot(opl3_slot *slot) { OPL3_SlotCalcFB(slot); OPL3_EnvelopeCalc(slot); OPL3_PhaseGenerate(slot); OPL3_SlotGenerate(slot); } static int16_t OPL3_ClipSampleOld(int32_t sample) { if (sample > 32767) { sample = 32767; } else if (sample < -32768) { sample = -32768; } return (int16_t)sample; } int16_t OPL3_ClipSample(int32_t sample) { int32_t sign = (sample < 0) ? -1 : 1; sample = (sample < 0) ? -sample : sample; sample *= 5; sample /= 8; sample = sample > 32767 ? 32767 : sample; sample *= sign; return (int16_t)sample; } void OPL3_Generate(opl3_chip *chip, int16_t *buf) { opl3_channel *channel; int16_t **out; int32_t mix[2]; uint8_t ii; int16_t accm; uint8_t shift = 0; buf[0] = OPL3_ClipSample(chip->mixbuff[0]); buf[1] = OPL3_ClipSample(chip->mixbuff[1]); for (ii = 0; ii < (chip->n_voices * 2); ii++) { OPL3_ProcessSlot(&chip->slot[ii]); } mix[0] = mix[1] = 0; for (ii = 0; ii < chip->n_voices; ii++) { channel = &chip->channel[ii]; out = channel->out; accm = *out[0] + *out[1] + *out[2] + *out[3]; mix[0] += (int16_t)((accm * channel->level[0]) >> 16); mix[1] += (int16_t)((accm * channel->level[1]) >> 16); } chip->mixbuff[0] = mix[0]; chip->mixbuff[1] = mix[1]; if ((chip->timer & 0x3f) == 0x3f) { chip->tremolopos = (chip->tremolopos + 1) % 210; } if (chip->tremolopos < 105) { chip->tremolo = chip->tremolopos >> chip->tremoloshift; } else { chip->tremolo = (210 - chip->tremolopos) >> chip->tremoloshift; } if ((chip->timer & 0x3ff) == 0x3ff) { chip->vibpos = (chip->vibpos + 1) & 7; } chip->timer++; chip->eg_add = 0; if (chip->eg_timer) { while (shift < 36 && ((chip->eg_timer >> shift) & 1) == 0) { shift++; } if (shift > 12) { chip->eg_add = 0; } else { chip->eg_add = shift + 1; } } if (chip->eg_timerrem || chip->eg_state) { if (chip->eg_timer == 0xfffffffff) { chip->eg_timer = 0; chip->eg_timerrem = 1; } else { chip->eg_timer++; chip->eg_timerrem = 0; } } chip->eg_state ^= 1; } void OPL3_GenerateResampled(opl3_chip *chip, int16_t *buf) { while (chip->samplecnt >= chip->rateratio) { chip->oldsamples[0] = chip->samples[0]; chip->oldsamples[1] = chip->samples[1]; OPL3_Generate(chip, chip->samples); chip->samplecnt -= chip->rateratio; } buf[0] = (int16_t)((chip->oldsamples[0] * (chip->rateratio - chip->samplecnt) + chip->samples[0] * chip->samplecnt) / chip->rateratio); buf[1] = (int16_t)((chip->oldsamples[1] * (chip->rateratio - chip->samplecnt) + chip->samples[1] * chip->samplecnt) / chip->rateratio); chip->samplecnt += 1 << RSM_FRAC; } // Operator void OPL3_SlotFlags(opl3_slot *slot, uint8_t tremolo, uint8_t vibrato, uint8_t sustaining, uint8_t ksr) { if (tremolo) { slot->trem = &slot->chip->tremolo; } else { slot->trem = (uint8_t*)&slot->chip->zeromod; } slot->reg_vib = vibrato & 0x01; slot->reg_type = sustaining & 0x01; slot->reg_ksr = ksr & 0x01; } void OPL3_SlotMult(opl3_slot *slot, uint8_t mult) { slot->reg_mult = mult & 0x0f; } void OPL3_SlotKSL(opl3_slot *slot, uint8_t ksl) { slot->reg_ksl = ksl & 0x03; OPL3_EnvelopeUpdateKSL(slot); } void OPL3_SlotLevel(opl3_slot *slot, uint8_t level) { slot->reg_tl = level & 0x3f; } void OPL3_SlotADSR(opl3_slot *slot, uint8_t attack, uint8_t decay, uint8_t sustain, uint8_t release) { slot->reg_ar = attack & 0x0f; slot->reg_dr = decay & 0x0f; slot->reg_sl = sustain & 0x0f; if (slot->reg_sl == 0x0f) { slot->reg_sl = 0x1f; } slot->reg_rr = release & 0x0f; if (slot->reg_rr == 0x00) { slot->reg_rr = 0x01; } } void OPL3_SlotWaveform(opl3_slot *slot, uint8_t waveform) { slot->reg_wf = waveform & 0x07; } // Channel static void OPL3_ChannelSetupAlg(opl3_channel *channel) { if (channel->alg & 0x08) { return; } if (channel->alg & 0x04) { channel->pair->out[0] = &channel->chip->zeromod; channel->pair->out[1] = &channel->chip->zeromod; channel->pair->out[2] = &channel->chip->zeromod; channel->pair->out[3] = &channel->chip->zeromod; switch (channel->alg & 0x03) { case 0x00: channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod; channel->pair->slots[1]->mod = &channel->pair->slots[0]->out; channel->slots[0]->mod = &channel->pair->slots[1]->out; channel->slots[1]->mod = &channel->slots[0]->out; channel->out[0] = &channel->slots[1]->out; channel->out[1] = &channel->chip->zeromod; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; case 0x01: channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod; channel->pair->slots[1]->mod = &channel->pair->slots[0]->out; channel->slots[0]->mod = &channel->chip->zeromod; channel->slots[1]->mod = &channel->slots[0]->out; channel->out[0] = &channel->pair->slots[1]->out; channel->out[1] = &channel->slots[1]->out; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; case 0x02: channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod; channel->pair->slots[1]->mod = &channel->chip->zeromod; channel->slots[0]->mod = &channel->pair->slots[1]->out; channel->slots[1]->mod = &channel->slots[0]->out; channel->out[0] = &channel->pair->slots[0]->out; channel->out[1] = &channel->slots[1]->out; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; case 0x03: channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod; channel->pair->slots[1]->mod = &channel->chip->zeromod; channel->slots[0]->mod = &channel->pair->slots[1]->out; channel->slots[1]->mod = &channel->chip->zeromod; channel->out[0] = &channel->pair->slots[0]->out; channel->out[1] = &channel->slots[0]->out; channel->out[2] = &channel->slots[1]->out; channel->out[3] = &channel->chip->zeromod; break; } } else { switch (channel->alg & 0x01) { case 0x00: channel->slots[0]->mod = &channel->slots[0]->fbmod; channel->slots[1]->mod = &channel->slots[0]->out; channel->out[0] = &channel->slots[1]->out; channel->out[1] = &channel->chip->zeromod; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; case 0x01: channel->slots[0]->mod = &channel->slots[0]->fbmod; channel->slots[1]->mod = &channel->chip->zeromod; channel->out[0] = &channel->slots[0]->out; channel->out[1] = &channel->slots[1]->out; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; } } } static void OPL3_ChannelUpdateAlg(opl3_channel *channel) { channel->alg = channel->con; if (channel->chtype == ch_4op) { channel->pair->alg = 0x04 | (channel->con << 1) | (channel->pair->con); channel->alg = 0x08; OPL3_ChannelSetupAlg(channel->pair); } else if (channel->chtype == ch_4op2) { channel->alg = 0x04 | (channel->pair->con << 1) | (channel->con); channel->pair->alg = 0x08; OPL3_ChannelSetupAlg(channel); } else { OPL3_ChannelSetupAlg(channel); } } void OPL3_ChannelFreq(opl3_channel *channel, uint8_t block, uint16_t f_num) { if (channel->chtype == ch_4op2) { return; } channel->f_num = f_num & 0x3ff; channel->block = block & 0x07; channel->ksv = (channel->block << 1) | ((channel->f_num >> (0x09 - channel->chip->nts)) & 0x01); OPL3_EnvelopeUpdateKSL(channel->slots[0]); OPL3_EnvelopeUpdateKSL(channel->slots[1]); if (channel->chtype == ch_4op) { channel->pair->f_num = channel->f_num; channel->pair->block = channel->block; channel->pair->ksv = channel->ksv; OPL3_EnvelopeUpdateKSL(channel->pair->slots[0]); OPL3_EnvelopeUpdateKSL(channel->pair->slots[1]); } } void OPL3_ChannelOutput(opl3_channel *channel, uint8_t output, uint32_t level) { channel->level[output & 1] = level; } void OPL3_Channel4Op(opl3_channel *channel, uint8_t op4) { if (op4) { channel->chtype = ch_4op; channel->pair->chtype = ch_4op2; OPL3_ChannelUpdateAlg(channel); } else { channel->chtype = ch_2op; channel->pair->chtype = ch_2op; OPL3_ChannelUpdateAlg(channel); OPL3_ChannelUpdateAlg(channel->pair); } } void OPL3_ChannelFeedback(opl3_channel *channel, uint8_t feedback) { channel->fb = feedback & 0x07; } void OPL3_ChannelAM(opl3_channel *channel, uint8_t am) { channel->con = am & 0x01; OPL3_ChannelUpdateAlg(channel); } static void OPL3_ChannelKeyOn(opl3_channel *channel) { if (channel->chtype == ch_4op) { OPL3_EnvelopeKeyOn(channel->slots[0]); OPL3_EnvelopeKeyOn(channel->slots[1]); OPL3_EnvelopeKeyOn(channel->pair->slots[0]); OPL3_EnvelopeKeyOn(channel->pair->slots[1]); } else if (channel->chtype == ch_2op) { OPL3_EnvelopeKeyOn(channel->slots[0]); OPL3_EnvelopeKeyOn(channel->slots[1]); } } static void OPL3_ChannelKeyOff(opl3_channel *channel) { if (channel->chtype == ch_4op) { OPL3_EnvelopeKeyOff(channel->slots[0]); OPL3_EnvelopeKeyOff(channel->slots[1]); OPL3_EnvelopeKeyOff(channel->pair->slots[0]); OPL3_EnvelopeKeyOff(channel->pair->slots[1]); } else if (channel->chtype == ch_2op) { OPL3_EnvelopeKeyOff(channel->slots[0]); OPL3_EnvelopeKeyOff(channel->slots[1]); } } void OPL3_Reset(opl3_chip *chip) { uint8_t slotnum; uint8_t channum; int32_t rateratio = chip->rateratio; uint8_t n_voices = chip->n_voices; opl3_slot *slot = chip->slot; opl3_channel *channel = chip->channel; memset(chip, 0, sizeof(opl3_chip) + (n_voices * (sizeof(opl3_slot) * 2 + sizeof(opl3_channel)))); chip->rateratio = rateratio; chip->n_voices = n_voices; chip->slot = slot; chip->channel = channel; for (slotnum = 0; slotnum < (chip->n_voices * 2); slotnum++) { slot = &chip->slot[slotnum]; slot->chip = chip; slot->mod = &chip->zeromod; slot->eg_rout = 0x1ff; slot->eg_out = 0x1ff; slot->eg_gen = envelope_gen_num_release; slot->trem = (uint8_t*)&chip->zeromod; slot->slot_num = slotnum; } for (channum = 0; channum < chip->n_voices; channum++) { channel = &chip->channel[channum]; channel->slots[0] = &chip->slot[channum * 2]; channel->slots[1] = &chip->slot[channum * 2 + 1]; chip->slot[channum * 2].channel = channel; chip->slot[channum * 2 + 1].channel = channel; channel->pair = &chip->channel[(channum & 1) ? (channum - 1) : (channum + 1)]; channel->chip = chip; channel->out[0] = &chip->zeromod; channel->out[1] = &chip->zeromod; channel->out[2] = &chip->zeromod; channel->out[3] = &chip->zeromod; channel->chtype = ch_2op; channel->level[0] = 0x10000; channel->level[1] = 0x10000; channel->ch_num = channum; OPL3_ChannelSetupAlg(channel); } chip->tremoloshift = 4; chip->vibshift = 1; } void OPL3_Rate(opl3_chip *chip, uint32_t samplerate) { chip->rateratio = (samplerate << RSM_FRAC) / 49716; } void OPL3_ChipFlags(opl3_chip *chip, uint8_t nts, uint8_t vibrato, uint8_t deeptremolo, uint8_t deepvibrato) { chip->nts = nts; chip->tremoloshift = ((deeptremolo ^ 1) << 1) + 2; chip->vibshift = deepvibrato ^ 1; } opl3_chip *OPL3_Alloc(uint32_t samplerate, uint8_t voices) { opl3_chip *chip = malloc(sizeof(opl3_chip) + (voices * (sizeof(opl3_slot) * 2 + sizeof(opl3_channel)))); chip->channel = (opl3_channel*)(((uint8_t*)chip) + sizeof(opl3_chip)); chip->slot = (opl3_slot*)(((uint8_t*)chip->channel) + (voices * sizeof(opl3_channel))); chip->n_voices = voices; OPL3_Rate(chip, samplerate); OPL3_Reset(chip); return chip; } uint8_t OPL3_Playing(opl3_chip *chip) { opl3_slot *slot; for(int z = 0; z < (chip->n_voices * 2); z++) { slot = &chip->slot[z]; if(slot->eg_out <= 0x100) { return 1; } } return 0; }