Archived
1
0
Fork 0
This repository has been archived on 2025-09-02. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
skcblitz/tcglm.h

11559 lines
255 KiB
C
Raw Permalink Normal View History

2025-09-02 14:43:36 +02:00
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#define GLM_SHUFFLE4(z, y, x, w) (((z) << 6) | ((y) << 4) | ((x) << 2) | (w))
#define GLM_SHUFFLE3(z, y, x) (((z) << 4) | ((y) << 2) | (x))
#ifdef __GNUC__
# define CGLM_ASSUME_ALIGNED(expr, alignment) \
__builtin_assume_aligned((expr), (alignment))
#else
# define CGLM_ASSUME_ALIGNED(expr, alignment) (expr)
#endif
#define CGLM_CASTPTR_ASSUME_ALIGNED(expr, type) \
((type*)CGLM_ASSUME_ALIGNED((expr), __alignof__(type)))
#if defined( __SSE__ ) || defined( __SSE2__ )
#define CGLM_SIMD
#define glmm_load(p) _mm_load_ps(p)
#define glmm_store(p, a) _mm_store_ps(p, a)
#define glmm_set1(x) _mm_set1_ps(x)
#define glmm_128 __m128
#ifdef CGLM_USE_INT_DOMAIN
# define glmm_shuff1(xmm, z, y, x, w) \
_mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(xmm), \
_MM_SHUFFLE(z, y, x, w)))
#else
# define glmm_shuff1(xmm, z, y, x, w) \
_mm_shuffle_ps(xmm, xmm, _MM_SHUFFLE(z, y, x, w))
#endif
#define glmm_splat(x, lane) glmm_shuff1(x, lane, lane, lane, lane)
#define glmm_splat_x(x) glmm_splat(x, 0)
#define glmm_splat_y(x) glmm_splat(x, 1)
#define glmm_splat_z(x) glmm_splat(x, 2)
#define glmm_splat_w(x) glmm_splat(x, 3)
#define glmm_shuff2(a, b, z0, y0, x0, w0, z1, y1, x1, w1) \
glmm_shuff1(_mm_shuffle_ps(a, b, _MM_SHUFFLE(z0, y0, x0, w0)), \
z1, y1, x1, w1)
static inline
__m128
glmm_abs(__m128 x) {
return _mm_andnot_ps(_mm_set1_ps(-0.0f), x);
}
static inline
__m128
glmm_vhadd(__m128 v) {
__m128 x0;
x0 = _mm_add_ps(v, glmm_shuff1(v, 0, 1, 2, 3));
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 0, 0, 1));
return x0;
}
static inline
__m128
glmm_vhadds(__m128 v) {
__m128 shuf, sums;
shuf = glmm_shuff1(v, 2, 3, 0, 1);
sums = _mm_add_ps(v, shuf);
shuf = _mm_movehl_ps(shuf, sums);
sums = _mm_add_ss(sums, shuf);
return sums;
}
static inline
float
glmm_hadd(__m128 v) {
return _mm_cvtss_f32(glmm_vhadds(v));
}
static inline
__m128
glmm_vhmin(__m128 v) {
__m128 x0, x1, x2;
x0 = _mm_movehl_ps(v, v); /* [2, 3, 2, 3] */
x1 = _mm_min_ps(x0, v); /* [0|2, 1|3, 2|2, 3|3] */
x2 = glmm_splat(x1, 1); /* [1|3, 1|3, 1|3, 1|3] */
return _mm_min_ss(x1, x2);
}
static inline
float
glmm_hmin(__m128 v) {
return _mm_cvtss_f32(glmm_vhmin(v));
}
static inline
__m128
glmm_vhmax(__m128 v) {
__m128 x0, x1, x2;
x0 = _mm_movehl_ps(v, v); /* [2, 3, 2, 3] */
x1 = _mm_max_ps(x0, v); /* [0|2, 1|3, 2|2, 3|3] */
x2 = glmm_splat(x1, 1); /* [1|3, 1|3, 1|3, 1|3] */
return _mm_max_ss(x1, x2);
}
static inline
float
glmm_hmax(__m128 v) {
return _mm_cvtss_f32(glmm_vhmax(v));
}
static inline
__m128
glmm_vdots(__m128 a, __m128 b) {
return glmm_vhadds(_mm_mul_ps(a, b));
}
static inline
__m128
glmm_vdot(__m128 a, __m128 b) {
__m128 x0;
x0 = _mm_mul_ps(a, b);
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 0, 3, 2));
return _mm_add_ps(x0, glmm_shuff1(x0, 0, 1, 0, 1));
}
static inline
float
glmm_dot(__m128 a, __m128 b) {
return _mm_cvtss_f32(glmm_vdots(a, b));
}
static inline
float
glmm_norm(__m128 a) {
return _mm_cvtss_f32(_mm_sqrt_ss(glmm_vhadds(_mm_mul_ps(a, a))));
}
static inline
float
glmm_norm2(__m128 a) {
return _mm_cvtss_f32(glmm_vhadds(_mm_mul_ps(a, a)));
}
static inline
float
glmm_norm_one(__m128 a) {
return _mm_cvtss_f32(glmm_vhadds(glmm_abs(a)));
}
static inline
float
glmm_norm_inf(__m128 a) {
return _mm_cvtss_f32(glmm_vhmax(glmm_abs(a)));
}
static inline
__m128
glmm_load3(float v[3]) {
__m128i xy;
__m128 z;
xy = _mm_loadl_epi64(CGLM_CASTPTR_ASSUME_ALIGNED(v, const __m128i));
z = _mm_load_ss(&v[2]);
return _mm_movelh_ps(_mm_castsi128_ps(xy), z);
}
static inline
void
glmm_store3(float v[3], __m128 vx) {
_mm_storel_pi(CGLM_CASTPTR_ASSUME_ALIGNED(v, __m64), vx);
_mm_store_ss(&v[2], glmm_shuff1(vx, 2, 2, 2, 2));
}
static inline
__m128
glmm_div(__m128 a, __m128 b) {
return _mm_div_ps(a, b);
}
static inline
__m128
glmm_fmadd(__m128 a, __m128 b, __m128 c) {
return _mm_add_ps(c, _mm_mul_ps(a, b));
}
static inline
__m128
glmm_fnmadd(__m128 a, __m128 b, __m128 c) {
return _mm_sub_ps(c, _mm_mul_ps(a, b));
}
static inline
__m128
glmm_fmsub(__m128 a, __m128 b, __m128 c) {
return _mm_sub_ps(_mm_mul_ps(a, b), c);
}
static inline
__m128
glmm_fnmsub(__m128 a, __m128 b, __m128 c) {
return _mm_xor_ps(_mm_add_ps(_mm_mul_ps(a, b), c), _mm_set1_ps(-0.0f));
}
#endif
#ifndef CGLM_USE_DEFAULT_EPSILON
# ifndef GLM_FLT_EPSILON
# define GLM_FLT_EPSILON 1e-5f
# endif
#else
# define GLM_FLT_EPSILON FLT_EPSILON
#endif
/*
* Clip control: define CGLM_FORCE_DEPTH_ZERO_TO_ONE before including
* CGLM to use a clip space between 0 to 1.
* Coordinate system: define CGLM_FORCE_LEFT_HANDED before including
* CGLM to use the left handed coordinate system by default.
*/
#define CGLM_CLIP_CONTROL_ZO_BIT (1 << 0) /* ZERO_TO_ONE */
#define CGLM_CLIP_CONTROL_NO_BIT (1 << 1) /* NEGATIVE_ONE_TO_ONE */
#define CGLM_CLIP_CONTROL_LH_BIT (1 << 2) /* LEFT_HANDED, For DirectX, Metal, Vulkan */
#define CGLM_CLIP_CONTROL_RH_BIT (1 << 3) /* RIGHT_HANDED, For OpenGL, default in GLM */
#define CGLM_CLIP_CONTROL_LH_ZO (CGLM_CLIP_CONTROL_LH_BIT | CGLM_CLIP_CONTROL_ZO_BIT)
#define CGLM_CLIP_CONTROL_LH_NO (CGLM_CLIP_CONTROL_LH_BIT | CGLM_CLIP_CONTROL_NO_BIT)
#define CGLM_CLIP_CONTROL_RH_ZO (CGLM_CLIP_CONTROL_RH_BIT | CGLM_CLIP_CONTROL_ZO_BIT)
#define CGLM_CLIP_CONTROL_RH_NO (CGLM_CLIP_CONTROL_RH_BIT | CGLM_CLIP_CONTROL_NO_BIT)
#define CGLM_CONFIG_CLIP_CONTROL CGLM_CLIP_CONTROL_RH_NO
#define GLM_MIN(X, Y) (((X) < (Y)) ? (X) : (Y))
#define GLM_MAX(X, Y) (((X) > (Y)) ? (X) : (Y))
/*!
* @brief get sign of 32 bit integer as +1, -1, 0
*
* Important: It returns 0 for zero input
*
* @param val integer value
*/
f_inline
int
glm_sign(int val) {
return ((val >> 31) - (-val >> 31));
}
/*!
* @brief get sign of 32 bit float as +1, -1, 0
*
* Important: It returns 0 for zero/NaN input
*
* @param val float value
*/
f_inline
float
glm_signf(float val) {
return (float)((val > 0.0f) - (val < 0.0f));
}
/*!
* @brief convert degree to radians
*
* @param[in] deg angle in degrees
*/
f_inline
float
glm_rad(float deg) {
return deg * GLM_PIf / 180.0f;
}
/*!
* @brief convert radians to degree
*
* @param[in] rad angle in radians
*/
f_inline
float
glm_deg(float rad) {
return rad * 180.0f / GLM_PIf;
}
/*!
* @brief convert exsisting degree to radians. this will override degrees value
*
* @param[in, out] deg pointer to angle in degrees
*/
f_inline
void
glm_make_rad(float *deg) {
*deg = *deg * GLM_PIf / 180.0f;
}
/*!
* @brief convert exsisting radians to degree. this will override radians value
*
* @param[in, out] rad pointer to angle in radians
*/
f_inline
void
glm_make_deg(float *rad) {
*rad = *rad * 180.0f / GLM_PIf;
}
/*!
* @brief multiplies given parameter with itself = x * x or powf(x, 2)
*
* @param[in] x x
*/
f_inline
float
glm_pow2(float x) {
return x * x;
}
/*!
* @brief find minimum of given two values
*
* @param[in] a number 1
* @param[in] b number 2
*/
f_inline
float
glm_min(float a, float b) {
if (a < b)
return a;
return b;
}
/*!
* @brief find maximum of given two values
*
* @param[in] a number 1
* @param[in] b number 2
*/
f_inline
float
glm_max(float a, float b) {
if (a > b)
return a;
return b;
}
/*!
* @brief clamp a number between min and max
*
* @param[in] val value to clamp
* @param[in] minVal minimum value
* @param[in] maxVal maximum value
*/
f_inline
float
glm_clamp(float val, float minVal, float maxVal) {
return glm_min(glm_max(val, minVal), maxVal);
}
/*!
* @brief clamp a number to zero and one
*
* @param[in] val value to clamp
*/
f_inline
float
glm_clamp_zo(float val) {
return glm_clamp(val, 0.0f, 1.0f);
}
/*!
* @brief linear interpolation between two numbers
*
* formula: from + t * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount)
*/
f_inline
float
glm_lerp(float from, float to, float t) {
return from + t * (to - from);
}
/*!
* @brief clamped linear interpolation between two numbers
*
* formula: from + t * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount) clamped between 0 and 1
*/
f_inline
float
glm_lerpc(float from, float to, float t) {
return glm_lerp(from, to, glm_clamp_zo(t));
}
/*!
* @brief threshold function
*
* @param[in] edge threshold
* @param[in] x value to test against threshold
* @return returns 0.0 if x < edge, else 1.0
*/
f_inline
float
glm_step(float edge, float x) {
/* branching - no type conversion */
return (x < edge) ? 0.0f : 1.0f;
/*
* An alternative implementation without branching
* but with type conversion could be:
* return !(x < edge);
*/
}
/*!
* @brief smooth Hermite interpolation
*
* formula: t^2 * (3-2t)
*
* @param[in] t interpolant (amount)
*/
f_inline
float
glm_smooth(float t) {
return t * t * (3.0f - 2.0f * t);
}
/*!
* @brief threshold function with a smooth transition (according to OpenCL specs)
*
* formula: t^2 * (3-2t)
*
* @param[in] edge0 low threshold
* @param[in] edge1 high threshold
* @param[in] x interpolant (amount)
*/
f_inline
float
glm_smoothstep(float edge0, float edge1, float x) {
float t;
t = glm_clamp_zo((x - edge0) / (edge1 - edge0));
return glm_smooth(t);
}
/*!
* @brief smoothstep interpolation between two numbers
*
* formula: from + smoothstep(t) * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount)
*/
f_inline
float
glm_smoothinterp(float from, float to, float t) {
return from + glm_smooth(t) * (to - from);
}
/*!
* @brief clamped smoothstep interpolation between two numbers
*
* formula: from + smoothstep(t) * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount) clamped between 0 and 1
*/
f_inline
float
glm_smoothinterpc(float from, float to, float t) {
return glm_smoothinterp(from, to, glm_clamp_zo(t));
}
/*!
* @brief check if two float equal with using EPSILON
*
* @param[in] a a
* @param[in] b b
*/
f_inline
byte
glm_eq(float a, float b) {
return fabsf(a - b) <= GLM_FLT_EPSILON;
}
/*!
* @brief percentage of current value between start and end value
*
* maybe fraction could be alternative name.
*
* @param[in] from from value
* @param[in] to to value
* @param[in] current current value
*/
f_inline
float
glm_percent(float from, float to, float current) {
float t;
if ((t = to - from) == 0.0f)
return 1.0f;
return (current - from) / t;
}
/*!
* @brief clamped percentage of current value between start and end value
*
* @param[in] from from value
* @param[in] to to value
* @param[in] current current value
*/
f_inline
float
glm_percentc(float from, float to, float current) {
return glm_clamp_zo(glm_percent(from, to, current));
}
/*!
* @brief swap two float values
*
* @param[in] a float value 1 (pointer)
* @param[in] b float value 2 (pointer)
*/
f_inline
void
glm_swapf(float * __restrict a, float * __restrict b) {
float t;
t = *a;
*a = *b;
*b = t;
}
/*!
* @brief fill a vector with specified value
*
* @param[out] v dest
* @param[in] val value
*/
f_inline
void
glm_vec2_fill(vec2 v, float val) {
v[0] = v[1] = val;
}
/*!
* @brief check if vector is equal to value (without epsilon)
*
* @param[in] v vector
* @param[in] val value
*/
f_inline
byte
glm_vec2_eq(vec2 v, float val) {
return v[0] == val && v[0] == v[1];
}
/*!
* @brief check if vector is equal to value (with epsilon)
*
* @param[in] v vector
* @param[in] val value
*/
f_inline
byte
glm_vec2_eq_eps(vec2 v, float val) {
return fabsf(v[0] - val) <= GLM_FLT_EPSILON
&& fabsf(v[1] - val) <= GLM_FLT_EPSILON;
}
/*!
* @brief check if vectors members are equal (without epsilon)
*
* @param[in] v vector
*/
f_inline
byte
glm_vec2_eq_all(vec2 v) {
return glm_vec2_eq_eps(v, v[0]);
}
/*!
* @brief check if vector is equal to another (without epsilon)
*
* @param[in] a vector
* @param[in] b vector
*/
f_inline
byte
glm_vec2_eqv(vec2 a, vec2 b) {
return a[0] == b[0] && a[1] == b[1];
}
/*!
* @brief check if vector is equal to another (with epsilon)
*
* @param[in] a vector
* @param[in] b vector
*/
f_inline
byte
glm_vec2_eqv_eps(vec2 a, vec2 b) {
return fabsf(a[0] - b[0]) <= GLM_FLT_EPSILON
&& fabsf(a[1] - b[1]) <= GLM_FLT_EPSILON;
}
/*!
* @brief max value of vector
*
* @param[in] v vector
*/
f_inline
float
glm_vec2_max(vec2 v) {
return glm_max(v[0], v[1]);
}
/*!
* @brief min value of vector
*
* @param[in] v vector
*/
f_inline
float
glm_vec2_min(vec2 v) {
return glm_min(v[0], v[1]);
}
/*!
* @brief check if all items are NaN (not a number)
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
f_inline
byte
glm_vec2_isnan(vec2 v) {
return isnan(v[0]) || isnan(v[1]);
}
/*!
* @brief check if all items are INFINITY
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
f_inline
byte
glm_vec2_isinf(vec2 v) {
return isinf(v[0]) || isinf(v[1]);
}
/*!
* @brief check if all items are valid number
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
f_inline
byte
glm_vec2_isvalid(vec2 v) {
return !glm_vec2_isnan(v) && !glm_vec2_isinf(v);
}
/*!
* @brief get sign of 32 bit float as +1, -1, 0
*
* Important: It returns 0 for zero/NaN input
*
* @param v vector
*/
f_inline
void
glm_vec2_sign(vec2 v, vec2 dest) {
dest[0] = glm_signf(v[0]);
dest[1] = glm_signf(v[1]);
}
/*!
* @brief absolute value of v
*
* @param[in] v vector
* @param[out] dest destination
*/
f_inline
void
glm_vec2_abs(vec2 v, vec2 dest) {
dest[0] = fabsf(v[0]);
dest[1] = fabsf(v[1]);
}
/*!
* @brief square root of each vector item
*
* @param[in] v vector
* @param[out] dest destination vector
*/
f_inline
void
glm_vec2_sqrt(vec2 v, vec2 dest) {
dest[0] = sqrtf(v[0]);
dest[1] = sqrtf(v[1]);
}
/*!
* @brief treat vectors as complex numbers and multiply them as such.
*
* @param[in] a left number
* @param[in] b right number
* @param[out] dest destination number
*/
f_inline
void
glm_vec2_complex_mul(vec2 a, vec2 b, vec2 dest) {
float tr, ti;
tr = a[0] * b[0] - a[1] * b[1];
ti = a[0] * b[1] + a[1] * b[0];
dest[0] = tr;
dest[1] = ti;
}
/*!
* @brief treat vectors as complex numbers and divide them as such.
*
* @param[in] a left number (numerator)
* @param[in] b right number (denominator)
* @param[out] dest destination number
*/
f_inline
void
glm_vec2_complex_div(vec2 a, vec2 b, vec2 dest) {
float tr, ti;
float const ibnorm2 = 1.0f / (b[0] * b[0] + b[1] * b[1]);
tr = ibnorm2 * (a[0] * b[0] + a[1] * b[1]);
ti = ibnorm2 * (a[1] * b[0] - a[0] * b[1]);
dest[0] = tr;
dest[1] = ti;
}
/*!
* @brief treat the vector as a complex number and conjugate it as such.
*
* @param[in] a the number
* @param[out] dest destination number
*/
f_inline
void
glm_vec2_complex_conjugate(vec2 a, vec2 dest) {
dest[0] = a[0];
dest[1] = -a[1];
}
#define GLM_VEC2_ONE_INIT {1.0f, 1.0f}
#define GLM_VEC2_ZERO_INIT {0.0f, 0.0f}
#define GLM_VEC2_ONE ((vec2)GLM_VEC2_ONE_INIT)
#define GLM_VEC2_ZERO ((vec2)GLM_VEC2_ZERO_INIT)
/*!
* @brief init vec2 using another vector
*
* @param[in] v a vector
* @param[out] dest destination
*/
f_inline
void
glm_vec2(float * __restrict v, vec2 dest) {
dest[0] = v[0];
dest[1] = v[1];
}
/*!
* @brief copy all members of [a] to [dest]
*
* @param[in] a source
* @param[out] dest destination
*/
f_inline
void
glm_vec2_copy(vec2 a, vec2 dest) {
dest[0] = a[0];
dest[1] = a[1];
}
/*!
* @brief make vector zero
*
* @param[in, out] v vector
*/
f_inline
void
glm_vec2_zero(vec2 v) {
v[0] = v[1] = 0.0f;
}
/*!
* @brief make vector one
*
* @param[in, out] v vector
*/
f_inline
void
glm_vec2_one(vec2 v) {
v[0] = v[1] = 1.0f;
}
/*!
* @brief vec2 dot product
*
* @param[in] a vector1
* @param[in] b vector2
*
* @return dot product
*/
f_inline
float
glm_vec2_dot(vec2 a, vec2 b) {
return a[0] * b[0] + a[1] * b[1];
}
/*!
* @brief vec2 cross product
*
* REF: http://allenchou.net/2013/07/cross-product-of-2d-vectors/
*
* @param[in] a vector1
* @param[in] b vector2
*
* @return Z component of cross product
*/
f_inline
float
glm_vec2_cross(vec2 a, vec2 b) {
/* just calculate the z-component */
return a[0] * b[1] - a[1] * b[0];
}
/*!
* @brief norm * norm (magnitude) of vec
*
* we can use this func instead of calling norm * norm, because it would call
* sqrtf fuction twice but with this func we can avoid func call, maybe this is
* not good name for this func
*
* @param[in] v vector
*
* @return norm * norm
*/
f_inline
float
glm_vec2_norm2(vec2 v) {
return glm_vec2_dot(v, v);
}
/*!
* @brief norm (magnitude) of vec2
*
* @param[in] vec vector
*
* @return norm
*/
f_inline
float
glm_vec2_norm(vec2 vec) {
return sqrtf(glm_vec2_norm2(vec));
}
/*!
* @brief add a vector to b vector store result in dest
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination vector
*/
f_inline
void
glm_vec2_add(vec2 a, vec2 b, vec2 dest) {
dest[0] = a[0] + b[0];
dest[1] = a[1] + b[1];
}
/*!
* @brief add scalar to v vector store result in dest (d = v + s)
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
f_inline
void
glm_vec2_adds(vec2 v, float s, vec2 dest) {
dest[0] = v[0] + s;
dest[1] = v[1] + s;
}
/*!
* @brief subtract b vector from a vector store result in dest
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination vector
*/
f_inline
void
glm_vec2_sub(vec2 a, vec2 b, vec2 dest) {
dest[0] = a[0] - b[0];
dest[1] = a[1] - b[1];
}
/*!
* @brief subtract scalar from v vector store result in dest (d = v - s)
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
f_inline
void
glm_vec2_subs(vec2 v, float s, vec2 dest) {
dest[0] = v[0] - s;
dest[1] = v[1] - s;
}
/*!
* @brief multiply two vector (component-wise multiplication)
*
* @param a v1
* @param b v2
* @param dest v3 = (a[0] * b[0], a[1] * b[1])
*/
f_inline
void
glm_vec2_mul(vec2 a, vec2 b, vec2 dest) {
dest[0] = a[0] * b[0];
dest[1] = a[1] * b[1];
}
/*!
* @brief multiply/scale vector with scalar: result = v * s
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
f_inline
void
glm_vec2_scale(vec2 v, float s, vec2 dest) {
dest[0] = v[0] * s;
dest[1] = v[1] * s;
}
/*!
* @brief scale as vector specified: result = unit(v) * s
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
f_inline
void
glm_vec2_scale_as(vec2 v, float s, vec2 dest) {
float norm;
norm = glm_vec2_norm(v);
if (norm == 0.0f) {
glm_vec2_zero(dest);
return;
}
glm_vec2_scale(v, s / norm, dest);
}
/*!
* @brief div vector with another component-wise division: d = a / b
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest result = (a[0]/b[0], a[1]/b[1])
*/
f_inline
void
glm_vec2_div(vec2 a, vec2 b, vec2 dest) {
dest[0] = a[0] / b[0];
dest[1] = a[1] / b[1];
}
/*!
* @brief div vector with scalar: d = v / s
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest result = (a[0]/s, a[1]/s)
*/
f_inline
void
glm_vec2_divs(vec2 v, float s, vec2 dest) {
dest[0] = v[0] / s;
dest[1] = v[1] / s;
}
/*!
* @brief add two vectors and add result to sum
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a + b)
*/
f_inline
void
glm_vec2_addadd(vec2 a, vec2 b, vec2 dest) {
dest[0] += a[0] + b[0];
dest[1] += a[1] + b[1];
}
/*!
* @brief sub two vectors and add result to dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a + b)
*/
f_inline
void
glm_vec2_subadd(vec2 a, vec2 b, vec2 dest) {
dest[0] += a[0] - b[0];
dest[1] += a[1] - b[1];
}
/*!
* @brief mul two vectors and add result to dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a * b)
*/
f_inline
void
glm_vec2_muladd(vec2 a, vec2 b, vec2 dest) {
dest[0] += a[0] * b[0];
dest[1] += a[1] * b[1];
}
/*!
* @brief mul vector with scalar and add result to sum
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector
* @param[in] s scalar
* @param[out] dest dest += (a * b)
*/
f_inline
void
glm_vec2_muladds(vec2 a, float s, vec2 dest) {
dest[0] += a[0] * s;
dest[1] += a[1] * s;
}
/*!
* @brief add max of two vector to result/dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += max(a, b)
*/
f_inline
void
glm_vec2_maxadd(vec2 a, vec2 b, vec2 dest) {
dest[0] += glm_max(a[0], b[0]);
dest[1] += glm_max(a[1], b[1]);
}
/*!
* @brief add min of two vector to result/dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += min(a, b)
*/
f_inline
void
glm_vec2_minadd(vec2 a, vec2 b, vec2 dest) {
dest[0] += glm_min(a[0], b[0]);
dest[1] += glm_min(a[1], b[1]);
}
/*!
* @brief negate vector components and store result in dest
*
* @param[in] v vector
* @param[out] dest result vector
*/
f_inline
void
glm_vec2_negate_to(vec2 v, vec2 dest) {
dest[0] = -v[0];
dest[1] = -v[1];
}
/*!
* @brief negate vector components
*
* @param[in, out] v vector
*/
f_inline
void
glm_vec2_negate(vec2 v) {
glm_vec2_negate_to(v, v);
}
/*!
* @brief normalize vector and store result in same vec
*
* @param[in, out] v vector
*/
f_inline
void
glm_vec2_normalize(vec2 v) {
float norm;
norm = glm_vec2_norm(v);
if (norm == 0.0f) {
v[0] = v[1] = 0.0f;
return;
}
glm_vec2_scale(v, 1.0f / norm, v);
}
/*!
* @brief normalize vector to dest
*
* @param[in] v source
* @param[out] dest destination
*/
f_inline
void
glm_vec2_normalize_to(vec2 v, vec2 dest) {
float norm;
norm = glm_vec2_norm(v);
if (norm == 0.0f) {
glm_vec2_zero(dest);
return;
}
glm_vec2_scale(v, 1.0f / norm, dest);
}
/*!
* @brief rotate vec2 around origin by angle (CCW: counterclockwise)
*
* Formula:
* 𝑥2 = cos(a)𝑥1 sin(a)𝑦1
* 𝑦2 = sin(a)𝑥1 + cos(a)𝑦1
*
* @param[in] v vector to rotate
* @param[in] angle angle by radians
* @param[out] dest destination vector
*/
f_inline
void
glm_vec2_rotate(vec2 v, float angle, vec2 dest) {
float c, s, x1, y1;
c = cosf(angle);
s = sinf(angle);
x1 = v[0];
y1 = v[1];
dest[0] = c * x1 - s * y1;
dest[1] = s * x1 + c * y1;
}
/**
* @brief squared distance between two vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @return returns squared distance (distance * distance)
*/
f_inline
float
glm_vec2_distance2(vec2 a, vec2 b) {
return glm_pow2(b[0] - a[0]) + glm_pow2(b[1] - a[1]);
}
/**
* @brief distance between two vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @return returns distance
*/
f_inline
float
glm_vec2_distance(vec2 a, vec2 b) {
return sqrtf(glm_vec2_distance2(a, b));
}
/*!
* @brief max values of vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination
*/
f_inline
void
glm_vec2_maxv(vec2 a, vec2 b, vec2 dest) {
dest[0] = glm_max(a[0], b[0]);
dest[1] = glm_max(a[1], b[1]);
}
/*!
* @brief min values of vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination
*/
f_inline
void
glm_vec2_minv(vec2 a, vec2 b, vec2 dest) {
dest[0] = glm_min(a[0], b[0]);
dest[1] = glm_min(a[1], b[1]);
}
/*!
* @brief clamp vector's individual members between min and max values
*
* @param[in, out] v vector
* @param[in] minval minimum value
* @param[in] maxval maximum value
*/
f_inline
void
glm_vec2_clamp(vec2 v, float minval, float maxval) {
v[0] = glm_clamp(v[0], minval, maxval);
v[1] = glm_clamp(v[1], minval, maxval);
}
/*!
* @brief linear interpolation between two vector
*
* formula: from + s * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount) clamped between 0 and 1
* @param[out] dest destination
*/
f_inline
void
glm_vec2_lerp(vec2 from, vec2 to, float t, vec2 dest) {
vec2 s, v;
/* from + s * (to - from) */
glm_vec2_fill(s, glm_clamp_zo(t));
glm_vec2_sub(to, from, v);
glm_vec2_mul(s, v, v);
glm_vec2_add(from, v, dest);
}
/*!
* @brief fill a vector with specified value
*
* @param[in] val value
* @param[out] d dest
*/
f_inline
void
glm_vec3_broadcast(float val, vec3 d) {
d[0] = d[1] = d[2] = val;
}
/*!
* @brief fill a vector with specified value
*
* @param[out] v dest
* @param[in] val value
*/
f_inline
void
glm_vec3_fill(vec3 v, float val) {
v[0] = v[1] = v[2] = val;
}
/*!
* @brief check if vector is equal to value (without epsilon)
*
* @param[in] v vector
* @param[in] val value
*/
f_inline
byte
glm_vec3_eq(vec3 v, float val) {
return v[0] == val && v[0] == v[1] && v[0] == v[2];
}
/*!
* @brief check if vector is equal to value (with epsilon)
*
* @param[in] v vector
* @param[in] val value
*/
f_inline
byte
glm_vec3_eq_eps(vec3 v, float val) {
return fabsf(v[0] - val) <= GLM_FLT_EPSILON
&& fabsf(v[1] - val) <= GLM_FLT_EPSILON
&& fabsf(v[2] - val) <= GLM_FLT_EPSILON;
}
/*!
* @brief check if vectors members are equal (without epsilon)
*
* @param[in] v vector
*/
f_inline
byte
glm_vec3_eq_all(vec3 v) {
return glm_vec3_eq_eps(v, v[0]);
}
/*!
* @brief check if vector is equal to another (without epsilon)
*
* @param[in] a vector
* @param[in] b vector
*/
f_inline
byte
glm_vec3_eqv(vec3 a, vec3 b) {
return a[0] == b[0]
&& a[1] == b[1]
&& a[2] == b[2];
}
/*!
* @brief check if vector is equal to another (with epsilon)
*
* @param[in] a vector
* @param[in] b vector
*/
f_inline
byte
glm_vec3_eqv_eps(vec3 a, vec3 b) {
return fabsf(a[0] - b[0]) <= GLM_FLT_EPSILON
&& fabsf(a[1] - b[1]) <= GLM_FLT_EPSILON
&& fabsf(a[2] - b[2]) <= GLM_FLT_EPSILON;
}
/*!
* @brief max value of vector
*
* @param[in] v vector
*/
f_inline
float
glm_vec3_max(vec3 v) {
float max;
max = v[0];
if (v[1] > max)
max = v[1];
if (v[2] > max)
max = v[2];
return max;
}
/*!
* @brief min value of vector
*
* @param[in] v vector
*/
f_inline
float
glm_vec3_min(vec3 v) {
float min;
min = v[0];
if (v[1] < min)
min = v[1];
if (v[2] < min)
min = v[2];
return min;
}
/*!
* @brief check if all items are NaN (not a number)
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
f_inline
byte
glm_vec3_isnan(vec3 v) {
return isnan(v[0]) || isnan(v[1]) || isnan(v[2]);
}
/*!
* @brief check if all items are INFINITY
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
f_inline
byte
glm_vec3_isinf(vec3 v) {
return isinf(v[0]) || isinf(v[1]) || isinf(v[2]);
}
/*!
* @brief check if all items are valid number
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
f_inline
byte
glm_vec3_isvalid(vec3 v) {
return !glm_vec3_isnan(v) && !glm_vec3_isinf(v);
}
/*!
* @brief get sign of 32 bit float as +1, -1, 0
*
* Important: It returns 0 for zero/NaN input
*
* @param v vector
*/
f_inline
void
glm_vec3_sign(vec3 v, vec3 dest) {
dest[0] = glm_signf(v[0]);
dest[1] = glm_signf(v[1]);
dest[2] = glm_signf(v[2]);
}
/*!
* @brief absolute value of each vector item
*
* @param[in] v vector
* @param[out] dest destination vector
*/
f_inline
void
glm_vec3_abs(vec3 v, vec3 dest) {
dest[0] = fabsf(v[0]);
dest[1] = fabsf(v[1]);
dest[2] = fabsf(v[2]);
}
/*!
* @brief fractional part of each vector item
*
* @param[in] v vector
* @param[out] dest destination vector
*/
f_inline
void
glm_vec3_fract(vec3 v, vec3 dest) {
dest[0] = fminf(v[0] - floorf(v[0]), 0.999999940395355224609375f);
dest[1] = fminf(v[1] - floorf(v[1]), 0.999999940395355224609375f);
dest[2] = fminf(v[2] - floorf(v[2]), 0.999999940395355224609375f);
}
/*!
* @brief vector reduction by summation
* @warning could overflow
*
* @param[in] v vector
* @return sum of all vector's elements
*/
f_inline
float
glm_vec3_hadd(vec3 v) {
return v[0] + v[1] + v[2];
}
/*!
* @brief square root of each vector item
*
* @param[in] v vector
* @param[out] dest destination vector
*/
f_inline
void
glm_vec3_sqrt(vec3 v, vec3 dest) {
dest[0] = sqrtf(v[0]);
dest[1] = sqrtf(v[1]);
dest[2] = sqrtf(v[2]);
}
/*!
* @brief fill a vector with specified value
*
* @param val value
* @param d dest
*/
f_inline
void
glm_vec4_broadcast(float val, vec4 d) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(d, _mm_set1_ps(val));
#else
d[0] = d[1] = d[2] = d[3] = val;
#endif
}
/*!
* @brief fill a vector with specified value
*
* @param v dest
* @param val value
*/
f_inline
void
glm_vec4_fill(vec4 v, float val) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(v, _mm_set1_ps(val));
#else
v[0] = v[1] = v[2] = v[3] = val;
#endif
}
/*!
* @brief check if vector is equal to value (without epsilon)
*
* @param v vector
* @param val value
*/
f_inline
byte
glm_vec4_eq(vec4 v, float val) {
return v[0] == val
&& v[0] == v[1]
&& v[0] == v[2]
&& v[0] == v[3];
}
/*!
* @brief check if vector is equal to value (with epsilon)
*
* @param v vector
* @param val value
*/
f_inline
byte
glm_vec4_eq_eps(vec4 v, float val) {
return fabsf(v[0] - val) <= GLM_FLT_EPSILON
&& fabsf(v[1] - val) <= GLM_FLT_EPSILON
&& fabsf(v[2] - val) <= GLM_FLT_EPSILON
&& fabsf(v[3] - val) <= GLM_FLT_EPSILON;
}
/*!
* @brief check if vectors members are equal (without epsilon)
*
* @param v vector
*/
f_inline
byte
glm_vec4_eq_all(vec4 v) {
return glm_vec4_eq_eps(v, v[0]);
}
/*!
* @brief check if vector is equal to another (without epsilon)
*
* @param a vector
* @param b vector
*/
f_inline
byte
glm_vec4_eqv(vec4 a, vec4 b) {
return a[0] == b[0]
&& a[1] == b[1]
&& a[2] == b[2]
&& a[3] == b[3];
}
/*!
* @brief check if vector is equal to another (with epsilon)
*
* @param a vector
* @param b vector
*/
f_inline
byte
glm_vec4_eqv_eps(vec4 a, vec4 b) {
return fabsf(a[0] - b[0]) <= GLM_FLT_EPSILON
&& fabsf(a[1] - b[1]) <= GLM_FLT_EPSILON
&& fabsf(a[2] - b[2]) <= GLM_FLT_EPSILON
&& fabsf(a[3] - b[3]) <= GLM_FLT_EPSILON;
}
/*!
* @brief max value of vector
*
* @param v vector
*/
f_inline
float
glm_vec4_max(vec4 v) {
float max;
max = glm_vec3_max(v);
if (v[3] > max)
max = v[3];
return max;
}
/*!
* @brief min value of vector
*
* @param v vector
*/
f_inline
float
glm_vec4_min(vec4 v) {
float min;
min = glm_vec3_min(v);
if (v[3] < min)
min = v[3];
return min;
}
/*!
* @brief check if one of items is NaN (not a number)
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
f_inline
byte
glm_vec4_isnan(vec4 v) {
return isnan(v[0]) || isnan(v[1]) || isnan(v[2]) || isnan(v[3]);
}
/*!
* @brief check if one of items is INFINITY
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
f_inline
byte
glm_vec4_isinf(vec4 v) {
return isinf(v[0]) || isinf(v[1]) || isinf(v[2]) || isinf(v[3]);
}
/*!
* @brief check if all items are valid number
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
f_inline
byte
glm_vec4_isvalid(vec4 v) {
return !glm_vec4_isnan(v) && !glm_vec4_isinf(v);
}
/*!
* @brief get sign of 32 bit float as +1, -1, 0
*
* Important: It returns 0 for zero/NaN input
*
* @param v vector
*/
f_inline
void
glm_vec4_sign(vec4 v, vec4 dest) {
#if defined( __SSE2__ ) || defined( __SSE2__ )
__m128 x0, x1, x2, x3, x4;
x0 = glmm_load(v);
x1 = _mm_set_ps(0.0f, 0.0f, 1.0f, -1.0f);
x2 = glmm_splat(x1, 2);
x3 = _mm_and_ps(_mm_cmpgt_ps(x0, x2), glmm_splat(x1, 1));
x4 = _mm_and_ps(_mm_cmplt_ps(x0, x2), glmm_splat(x1, 0));
glmm_store(dest, _mm_or_ps(x3, x4));
#else
dest[0] = glm_signf(v[0]);
dest[1] = glm_signf(v[1]);
dest[2] = glm_signf(v[2]);
dest[3] = glm_signf(v[3]);
#endif
}
/*!
* @brief absolute value of each vector item
*
* @param[in] v vector
* @param[out] dest destination vector
*/
f_inline
void
glm_vec4_abs(vec4 v, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, glmm_abs(glmm_load(v)));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vabsq_f32(vld1q_f32(v)));
#else
dest[0] = fabsf(v[0]);
dest[1] = fabsf(v[1]);
dest[2] = fabsf(v[2]);
dest[3] = fabsf(v[3]);
#endif
}
/*!
* @brief fractional part of each vector item
*
* @param[in] v vector
* @param[out] dest destination vector
*/
f_inline
void
glm_vec4_fract(vec4 v, vec4 dest) {
dest[0] = fminf(v[0] - floorf(v[0]), 0.999999940395355224609375f);
dest[1] = fminf(v[1] - floorf(v[1]), 0.999999940395355224609375f);
dest[2] = fminf(v[2] - floorf(v[2]), 0.999999940395355224609375f);
dest[3] = fminf(v[3] - floorf(v[3]), 0.999999940395355224609375f);
}
/*!
* @brief vector reduction by summation
* @warning could overflow
*
* @param[in] v vector
* @return sum of all vector's elements
*/
f_inline
float
glm_vec4_hadd(vec4 v) {
#if defined( __SSE__ ) || defined( __SSE2__ )
return glmm_hadd(glmm_load(v));
#else
return v[0] + v[1] + v[2] + v[3];
#endif
}
/*!
* @brief square root of each vector item
*
* @param[in] v vector
* @param[out] dest destination vector
*/
f_inline
void
glm_vec4_sqrt(vec4 v, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_sqrt_ps(glmm_load(v)));
#else
dest[0] = sqrtf(v[0]);
dest[1] = sqrtf(v[1]);
dest[2] = sqrtf(v[2]);
dest[3] = sqrtf(v[3]);
#endif
}
#define GLM_VEC4_ONE_INIT {1.0f, 1.0f, 1.0f, 1.0f}
#define GLM_VEC4_BLACK_INIT {0.0f, 0.0f, 0.0f, 1.0f}
#define GLM_VEC4_ZERO_INIT {0.0f, 0.0f, 0.0f, 0.0f}
#define GLM_VEC4_ONE ((vec4)GLM_VEC4_ONE_INIT)
#define GLM_VEC4_BLACK ((vec4)GLM_VEC4_BLACK_INIT)
#define GLM_VEC4_ZERO ((vec4)GLM_VEC4_ZERO_INIT)
#define GLM_XXXX GLM_SHUFFLE4(0, 0, 0, 0)
#define GLM_YYYY GLM_SHUFFLE4(1, 1, 1, 1)
#define GLM_ZZZZ GLM_SHUFFLE4(2, 2, 2, 2)
#define GLM_WWWW GLM_SHUFFLE4(3, 3, 3, 3)
#define GLM_WZYX GLM_SHUFFLE4(0, 1, 2, 3)
/*!
* @brief init vec4 using vec3
*
* @param[in] v3 vector3
* @param[in] last last item
* @param[out] dest destination
*/
f_inline
void
glm_vec4(vec3 v3, float last, vec4 dest) {
dest[0] = v3[0];
dest[1] = v3[1];
dest[2] = v3[2];
dest[3] = last;
}
/*!
* @brief copy first 3 members of [a] to [dest]
*
* @param[in] a source
* @param[out] dest destination
*/
f_inline
void
glm_vec4_copy3(vec4 a, vec3 dest) {
dest[0] = a[0];
dest[1] = a[1];
dest[2] = a[2];
}
/*!
* @brief copy all members of [a] to [dest]
*
* @param[in] v source
* @param[out] dest destination
*/
f_inline
void
glm_vec4_copy(vec4 v, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, glmm_load(v));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vld1q_f32(v));
#else
dest[0] = v[0];
dest[1] = v[1];
dest[2] = v[2];
dest[3] = v[3];
#endif
}
/*!
* @brief copy all members of [a] to [dest]
*
* alignment is not required
*
* @param[in] v source
* @param[out] dest destination
*/
f_inline
void
glm_vec4_ucopy(vec4 v, vec4 dest) {
dest[0] = v[0];
dest[1] = v[1];
dest[2] = v[2];
dest[3] = v[3];
}
/*!
* @brief make vector zero
*
* @param[in, out] v vector
*/
f_inline
void
glm_vec4_zero(vec4 v) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(v, _mm_setzero_ps());
#elif defined(CGLM_NEON_FP)
vst1q_f32(v, vdupq_n_f32(0.0f));
#else
v[0] = 0.0f;
v[1] = 0.0f;
v[2] = 0.0f;
v[3] = 0.0f;
#endif
}
/*!
* @brief make vector one
*
* @param[in, out] v vector
*/
f_inline
void
glm_vec4_one(vec4 v) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(v, _mm_set1_ps(1.0f));
#elif defined(CGLM_NEON_FP)
vst1q_f32(v, vdupq_n_f32(1.0f));
#else
v[0] = 1.0f;
v[1] = 1.0f;
v[2] = 1.0f;
v[3] = 1.0f;
#endif
}
/*!
* @brief vec4 dot product
*
* @param[in] a vector1
* @param[in] b vector2
*
* @return dot product
*/
f_inline
float
glm_vec4_dot(vec4 a, vec4 b) {
#if defined(CGLM_SIMD)
return glmm_dot(glmm_load(a), glmm_load(b));
#else
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
#endif
}
/*!
* @brief norm * norm (magnitude) of vec
*
* we can use this func instead of calling norm * norm, because it would call
* sqrtf fuction twice but with this func we can avoid func call, maybe this is
* not good name for this func
*
* @param[in] v vec4
*
* @return norm * norm
*/
f_inline
float
glm_vec4_norm2(vec4 v) {
return glm_vec4_dot(v, v);
}
/*!
* @brief euclidean norm (magnitude), also called L2 norm
* this will give magnitude of vector in euclidean space
*
* @param[in] v vector
*
* @return norm
*/
f_inline
float
glm_vec4_norm(vec4 v) {
#if defined(CGLM_SIMD)
return glmm_norm(glmm_load(v));
#else
return sqrtf(glm_vec4_dot(v, v));
#endif
}
/*!
* @brief L1 norm of vec4
* Also known as Manhattan Distance or Taxicab norm.
* L1 Norm is the sum of the magnitudes of the vectors in a space.
* It is calculated as the sum of the absolute values of the vector components.
* In this norm, all the components of the vector are weighted equally.
*
* This computes:
* L1 norm = |v[0]| + |v[1]| + |v[2]| + |v[3]|
*
* @param[in] v vector
*
* @return L1 norm
*/
f_inline
float
glm_vec4_norm_one(vec4 v) {
#if defined(CGLM_SIMD)
return glmm_norm_one(glmm_load(v));
#else
vec4 t;
glm_vec4_abs(v, t);
return glm_vec4_hadd(t);
#endif
}
/*!
* @brief infinity norm of vec4
* Also known as Maximum norm.
* Infinity Norm is the largest magnitude among each element of a vector.
* It is calculated as the maximum of the absolute values of the vector components.
*
* This computes:
* inf norm = max(|v[0]|, |v[1]|, |v[2]|, |v[3]|)
*
* @param[in] v vector
*
* @return infinity norm
*/
f_inline
float
glm_vec4_norm_inf(vec4 v) {
#if defined(CGLM_SIMD)
return glmm_norm_inf(glmm_load(v));
#else
vec4 t;
glm_vec4_abs(v, t);
return glm_vec4_max(t);
#endif
}
/*!
* @brief add b vector to a vector store result in dest
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination vector
*/
f_inline
void
glm_vec4_add(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_add_ps(glmm_load(a), glmm_load(b)));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vaddq_f32(vld1q_f32(a), vld1q_f32(b)));
#else
dest[0] = a[0] + b[0];
dest[1] = a[1] + b[1];
dest[2] = a[2] + b[2];
dest[3] = a[3] + b[3];
#endif
}
/*!
* @brief add scalar to v vector store result in dest (d = v + vec(s))
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
f_inline
void
glm_vec4_adds(vec4 v, float s, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_add_ps(glmm_load(v), _mm_set1_ps(s)));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vaddq_f32(vld1q_f32(v), vdupq_n_f32(s)));
#else
dest[0] = v[0] + s;
dest[1] = v[1] + s;
dest[2] = v[2] + s;
dest[3] = v[3] + s;
#endif
}
/*!
* @brief subtract b vector from a vector store result in dest (d = a - b)
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination vector
*/
f_inline
void
glm_vec4_sub(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_sub_ps(glmm_load(a), glmm_load(b)));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vsubq_f32(vld1q_f32(a), vld1q_f32(b)));
#else
dest[0] = a[0] - b[0];
dest[1] = a[1] - b[1];
dest[2] = a[2] - b[2];
dest[3] = a[3] - b[3];
#endif
}
/*!
* @brief subtract scalar from v vector store result in dest (d = v - vec(s))
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
f_inline
void
glm_vec4_subs(vec4 v, float s, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_sub_ps(glmm_load(v), _mm_set1_ps(s)));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vsubq_f32(vld1q_f32(v), vdupq_n_f32(s)));
#else
dest[0] = v[0] - s;
dest[1] = v[1] - s;
dest[2] = v[2] - s;
dest[3] = v[3] - s;
#endif
}
/*!
* @brief multiply two vector (component-wise multiplication)
*
* @param a vector1
* @param b vector2
* @param dest dest = (a[0] * b[0], a[1] * b[1], a[2] * b[2], a[3] * b[3])
*/
f_inline
void
glm_vec4_mul(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_mul_ps(glmm_load(a), glmm_load(b)));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vmulq_f32(vld1q_f32(a), vld1q_f32(b)));
#else
dest[0] = a[0] * b[0];
dest[1] = a[1] * b[1];
dest[2] = a[2] * b[2];
dest[3] = a[3] * b[3];
#endif
}
/*!
* @brief multiply/scale vec4 vector with scalar: result = v * s
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
f_inline
void
glm_vec4_scale(vec4 v, float s, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_mul_ps(glmm_load(v), _mm_set1_ps(s)));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vmulq_f32(vld1q_f32(v), vdupq_n_f32(s)));
#else
dest[0] = v[0] * s;
dest[1] = v[1] * s;
dest[2] = v[2] * s;
dest[3] = v[3] * s;
#endif
}
/*!
* @brief make vec4 vector scale as specified: result = unit(v) * s
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
f_inline
void
glm_vec4_scale_as(vec4 v, float s, vec4 dest) {
float norm;
norm = glm_vec4_norm(v);
if (norm == 0.0f) {
glm_vec4_zero(dest);
return;
}
glm_vec4_scale(v, s / norm, dest);
}
/*!
* @brief div vector with another component-wise division: d = a / b
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest result = (a[0]/b[0], a[1]/b[1], a[2]/b[2], a[3]/b[3])
*/
f_inline
void
glm_vec4_div(vec4 a, vec4 b, vec4 dest) {
#if defined(CGLM_SIMD)
glmm_store(dest, glmm_div(glmm_load(a), glmm_load(b)));
#else
dest[0] = a[0] / b[0];
dest[1] = a[1] / b[1];
dest[2] = a[2] / b[2];
dest[3] = a[3] / b[3];
#endif
}
/*!
* @brief div vec4 vector with scalar: d = v / s
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
f_inline
void
glm_vec4_divs(vec4 v, float s, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_div_ps(glmm_load(v), _mm_set1_ps(s)));
#else
glm_vec4_scale(v, 1.0f / s, dest);
#endif
}
/*!
* @brief add two vectors and add result to sum
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a + b)
*/
f_inline
void
glm_vec4_addadd(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_add_ps(glmm_load(dest),
_mm_add_ps(glmm_load(a),
glmm_load(b))));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vaddq_f32(vld1q_f32(dest),
vaddq_f32(vld1q_f32(a),
vld1q_f32(b))));
#else
dest[0] += a[0] + b[0];
dest[1] += a[1] + b[1];
dest[2] += a[2] + b[2];
dest[3] += a[3] + b[3];
#endif
}
/*!
* @brief sub two vectors and add result to dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a - b)
*/
f_inline
void
glm_vec4_subadd(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_add_ps(glmm_load(dest),
_mm_sub_ps(glmm_load(a),
glmm_load(b))));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vaddq_f32(vld1q_f32(dest),
vsubq_f32(vld1q_f32(a),
vld1q_f32(b))));
#else
dest[0] += a[0] - b[0];
dest[1] += a[1] - b[1];
dest[2] += a[2] - b[2];
dest[3] += a[3] - b[3];
#endif
}
/*!
* @brief mul two vectors and add result to dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a * b)
*/
f_inline
void
glm_vec4_muladd(vec4 a, vec4 b, vec4 dest) {
#if defined(CGLM_SIMD)
glmm_store(dest, glmm_fmadd(glmm_load(a), glmm_load(b), glmm_load(dest)));
#else
dest[0] += a[0] * b[0];
dest[1] += a[1] * b[1];
dest[2] += a[2] * b[2];
dest[3] += a[3] * b[3];
#endif
}
/*!
* @brief mul vector with scalar and add result to sum
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector
* @param[in] s scalar
* @param[out] dest dest += (a * b)
*/
f_inline
void
glm_vec4_muladds(vec4 a, float s, vec4 dest) {
#if defined(CGLM_SIMD)
glmm_store(dest, glmm_fmadd(glmm_load(a), glmm_set1(s), glmm_load(dest)));
#else
dest[0] += a[0] * s;
dest[1] += a[1] * s;
dest[2] += a[2] * s;
dest[3] += a[3] * s;
#endif
}
/*!
* @brief add max of two vector to result/dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += max(a, b)
*/
f_inline
void
glm_vec4_maxadd(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_add_ps(glmm_load(dest),
_mm_max_ps(glmm_load(a),
glmm_load(b))));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vaddq_f32(vld1q_f32(dest),
vmaxq_f32(vld1q_f32(a),
vld1q_f32(b))));
#else
dest[0] += glm_max(a[0], b[0]);
dest[1] += glm_max(a[1], b[1]);
dest[2] += glm_max(a[2], b[2]);
dest[3] += glm_max(a[3], b[3]);
#endif
}
/*!
* @brief add min of two vector to result/dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += min(a, b)
*/
f_inline
void
glm_vec4_minadd(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_add_ps(glmm_load(dest),
_mm_min_ps(glmm_load(a),
glmm_load(b))));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vaddq_f32(vld1q_f32(dest),
vminq_f32(vld1q_f32(a),
vld1q_f32(b))));
#else
dest[0] += glm_min(a[0], b[0]);
dest[1] += glm_min(a[1], b[1]);
dest[2] += glm_min(a[2], b[2]);
dest[3] += glm_min(a[3], b[3]);
#endif
}
/*!
* @brief negate vector components and store result in dest
*
* @param[in] v vector
* @param[out] dest result vector
*/
f_inline
void
glm_vec4_negate_to(vec4 v, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_xor_ps(glmm_load(v), _mm_set1_ps(-0.0f)));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vnegq_f32(vld1q_f32(v)));
#else
dest[0] = -v[0];
dest[1] = -v[1];
dest[2] = -v[2];
dest[3] = -v[3];
#endif
}
/*!
* @brief flip sign of all vec4 members
*
* @param[in, out] v vector
*/
f_inline
void
glm_vec4_negate(vec4 v) {
glm_vec4_negate_to(v, v);
}
/*!
* @brief normalize vec4 to dest
*
* @param[in] v source
* @param[out] dest destination
*/
f_inline
void
glm_vec4_normalize_to(vec4 v, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
__m128 xdot, x0;
float dot;
x0 = glmm_load(v);
xdot = glmm_vdot(x0, x0);
dot = _mm_cvtss_f32(xdot);
if (dot == 0.0f) {
glmm_store(dest, _mm_setzero_ps());
return;
}
glmm_store(dest, _mm_div_ps(x0, _mm_sqrt_ps(xdot)));
#else
float norm;
norm = glm_vec4_norm(v);
if (norm == 0.0f) {
glm_vec4_zero(dest);
return;
}
glm_vec4_scale(v, 1.0f / norm, dest);
#endif
}
/*!
* @brief normalize vec4 and store result in same vec
*
* @param[in, out] v vector
*/
f_inline
void
glm_vec4_normalize(vec4 v) {
glm_vec4_normalize_to(v, v);
}
/**
* @brief distance between two vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @return returns distance
*/
f_inline
float
glm_vec4_distance(vec4 a, vec4 b) {
#if defined( __SSE__ ) || defined( __SSE2__ )
return glmm_norm(_mm_sub_ps(glmm_load(a), glmm_load(b)));
#elif defined(CGLM_NEON_FP)
return glmm_norm(vsubq_f32(glmm_load(a), glmm_load(b)));
#else
return sqrtf(glm_pow2(a[0] - b[0])
+ glm_pow2(a[1] - b[1])
+ glm_pow2(a[2] - b[2])
+ glm_pow2(a[3] - b[3]));
#endif
}
/**
* @brief squared distance between two vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @return returns squared distance
*/
f_inline
float
glm_vec4_distance2(vec4 a, vec4 b) {
#if defined( __SSE__ ) || defined( __SSE2__ )
return glmm_norm2(_mm_sub_ps(glmm_load(a), glmm_load(b)));
#elif defined(CGLM_NEON_FP)
return glmm_norm2(vsubq_f32(glmm_load(a), glmm_load(b)));
#else
return glm_pow2(a[0] - b[0])
+ glm_pow2(a[1] - b[1])
+ glm_pow2(a[2] - b[2])
+ glm_pow2(a[3] - b[3]);
#endif
}
/*!
* @brief max values of vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination
*/
f_inline
void
glm_vec4_maxv(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_max_ps(glmm_load(a), glmm_load(b)));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vmaxq_f32(vld1q_f32(a), vld1q_f32(b)));
#else
dest[0] = glm_max(a[0], b[0]);
dest[1] = glm_max(a[1], b[1]);
dest[2] = glm_max(a[2], b[2]);
dest[3] = glm_max(a[3], b[3]);
#endif
}
/*!
* @brief min values of vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination
*/
f_inline
void
glm_vec4_minv(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_min_ps(glmm_load(a), glmm_load(b)));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vminq_f32(vld1q_f32(a), vld1q_f32(b)));
#else
dest[0] = glm_min(a[0], b[0]);
dest[1] = glm_min(a[1], b[1]);
dest[2] = glm_min(a[2], b[2]);
dest[3] = glm_min(a[3], b[3]);
#endif
}
/*!
* @brief clamp vector's individual members between min and max values
*
* @param[in, out] v vector
* @param[in] minVal minimum value
* @param[in] maxVal maximum value
*/
f_inline
void
glm_vec4_clamp(vec4 v, float minVal, float maxVal) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(v, _mm_min_ps(_mm_max_ps(glmm_load(v), _mm_set1_ps(minVal)),
_mm_set1_ps(maxVal)));
#elif defined(CGLM_NEON_FP)
vst1q_f32(v, vminq_f32(vmaxq_f32(vld1q_f32(v), vdupq_n_f32(minVal)),
vdupq_n_f32(maxVal)));
#else
v[0] = glm_clamp(v[0], minVal, maxVal);
v[1] = glm_clamp(v[1], minVal, maxVal);
v[2] = glm_clamp(v[2], minVal, maxVal);
v[3] = glm_clamp(v[3], minVal, maxVal);
#endif
}
/*!
* @brief linear interpolation between two vectors
*
* formula: from + t * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount)
* @param[out] dest destination
*/
f_inline
void
glm_vec4_lerp(vec4 from, vec4 to, float t, vec4 dest) {
vec4 s, v;
/* from + s * (to - from) */
glm_vec4_broadcast(t, s);
glm_vec4_sub(to, from, v);
glm_vec4_mul(s, v, v);
glm_vec4_add(from, v, dest);
}
/*!
* @brief linear interpolation between two vectors (clamped)
*
* formula: from + t * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount) clamped between 0 and 1
* @param[out] dest destination
*/
f_inline
void
glm_vec4_lerpc(vec4 from, vec4 to, float t, vec4 dest) {
glm_vec4_lerp(from, to, glm_clamp_zo(t), dest);
}
/*!
* @brief linear interpolation between two vectors
*
* formula: from + t * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount)
* @param[out] dest destination
*/
f_inline
void
glm_vec4_mix(vec4 from, vec4 to, float t, vec4 dest) {
glm_vec4_lerp(from, to, t, dest);
}
/*!
* @brief linear interpolation between two vectors (clamped)
*
* formula: from + t * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount) clamped between 0 and 1
* @param[out] dest destination
*/
f_inline
void
glm_vec4_mixc(vec4 from, vec4 to, float t, vec4 dest) {
glm_vec4_lerpc(from, to, t, dest);
}
/*!
* @brief threshold function (unidimensional)
*
* @param[in] edge threshold
* @param[in] x value to test against threshold
* @param[out] dest destination
*/
f_inline
void
glm_vec4_step_uni(float edge, vec4 x, vec4 dest) {
dest[0] = glm_step(edge, x[0]);
dest[1] = glm_step(edge, x[1]);
dest[2] = glm_step(edge, x[2]);
dest[3] = glm_step(edge, x[3]);
}
/*!
* @brief threshold function
*
* @param[in] edge threshold
* @param[in] x value to test against threshold
* @param[out] dest destination
*/
f_inline
void
glm_vec4_step(vec4 edge, vec4 x, vec4 dest) {
dest[0] = glm_step(edge[0], x[0]);
dest[1] = glm_step(edge[1], x[1]);
dest[2] = glm_step(edge[2], x[2]);
dest[3] = glm_step(edge[3], x[3]);
}
/*!
* @brief threshold function with a smooth transition (unidimensional)
*
* @param[in] edge0 low threshold
* @param[in] edge1 high threshold
* @param[in] x value to test against threshold
* @param[out] dest destination
*/
f_inline
void
glm_vec4_smoothstep_uni(float edge0, float edge1, vec4 x, vec4 dest) {
dest[0] = glm_smoothstep(edge0, edge1, x[0]);
dest[1] = glm_smoothstep(edge0, edge1, x[1]);
dest[2] = glm_smoothstep(edge0, edge1, x[2]);
dest[3] = glm_smoothstep(edge0, edge1, x[3]);
}
/*!
* @brief threshold function with a smooth transition
*
* @param[in] edge0 low threshold
* @param[in] edge1 high threshold
* @param[in] x value to test against threshold
* @param[out] dest destination
*/
f_inline
void
glm_vec4_smoothstep(vec4 edge0, vec4 edge1, vec4 x, vec4 dest) {
dest[0] = glm_smoothstep(edge0[0], edge1[0], x[0]);
dest[1] = glm_smoothstep(edge0[1], edge1[1], x[1]);
dest[2] = glm_smoothstep(edge0[2], edge1[2], x[2]);
dest[3] = glm_smoothstep(edge0[3], edge1[3], x[3]);
}
/*!
* @brief smooth Hermite interpolation between two vectors
*
* formula: t^2 * (3 - 2*t)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount)
* @param[out] dest destination
*/
f_inline
void
glm_vec4_smoothinterp(vec4 from, vec4 to, float t, vec4 dest) {
vec4 s, v;
/* from + smoothstep * (to - from) */
glm_vec4_broadcast(glm_smooth(t), s);
glm_vec4_sub(to, from, v);
glm_vec4_mul(s, v, v);
glm_vec4_add(from, v, dest);
}
/*!
* @brief smooth Hermite interpolation between two vectors (clamped)
*
* formula: t^2 * (3 - 2*t)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount) clamped between 0 and 1
* @param[out] dest destination
*/
f_inline
void
glm_vec4_smoothinterpc(vec4 from, vec4 to, float t, vec4 dest) {
glm_vec4_smoothinterp(from, to, glm_clamp_zo(t), dest);
}
/*!
* @brief helper to fill vec4 as [S^3, S^2, S, 1]
*
* @param[in] s parameter
* @param[out] dest destination
*/
f_inline
void
glm_vec4_cubic(float s, vec4 dest) {
float ss;
ss = s * s;
dest[0] = ss * s;
dest[1] = ss;
dest[2] = s;
dest[3] = 1.0f;
}
/*!
* @brief swizzle vector components
*
* you can use existin masks e.g. GLM_XXXX, GLM_WZYX
*
* @param[in] v source
* @param[in] mask mask
* @param[out] dest destination
*/
f_inline
void
glm_vec4_swizzle(vec4 v, int mask, vec4 dest) {
vec4 t;
t[0] = v[(mask & (3 << 0))];
t[1] = v[(mask & (3 << 2)) >> 2];
t[2] = v[(mask & (3 << 4)) >> 4];
t[3] = v[(mask & (3 << 6)) >> 6];
glm_vec4_copy(t, dest);
}
#define GLM_VEC3_ONE_INIT {1.0f, 1.0f, 1.0f}
#define GLM_VEC3_ZERO_INIT {0.0f, 0.0f, 0.0f}
#define GLM_VEC3_ONE ((vec3)GLM_VEC3_ONE_INIT)
#define GLM_VEC3_ZERO ((vec3)GLM_VEC3_ZERO_INIT)
#define GLM_YUP ((vec3){0.0f, 1.0f, 0.0f})
#define GLM_ZUP ((vec3){0.0f, 0.0f, 1.0f})
#define GLM_XUP ((vec3){1.0f, 0.0f, 0.0f})
#define GLM_FORWARD ((vec3){0.0f, 0.0f, -1.0f})
#define GLM_XXX GLM_SHUFFLE3(0, 0, 0)
#define GLM_YYY GLM_SHUFFLE3(1, 1, 1)
#define GLM_ZZZ GLM_SHUFFLE3(2, 2, 2)
#define GLM_ZYX GLM_SHUFFLE3(0, 1, 2)
/*!
* @brief init vec3 using vec4
*
* @param[in] v4 vector4
* @param[out] dest destination
*/
f_inline
void
glm_vec3(vec4 v4, vec3 dest) {
dest[0] = v4[0];
dest[1] = v4[1];
dest[2] = v4[2];
}
/*!
* @brief copy all members of [a] to [dest]
*
* @param[in] a source
* @param[out] dest destination
*/
f_inline
void
glm_vec3_copy(vec3 a, vec3 dest) {
dest[0] = a[0];
dest[1] = a[1];
dest[2] = a[2];
}
/*!
* @brief make vector zero
*
* @param[in, out] v vector
*/
f_inline
void
glm_vec3_zero(vec3 v) {
v[0] = v[1] = v[2] = 0.0f;
}
/*!
* @brief make vector one
*
* @param[in, out] v vector
*/
f_inline
void
glm_vec3_one(vec3 v) {
v[0] = v[1] = v[2] = 1.0f;
}
/*!
* @brief vec3 dot product
*
* @param[in] a vector1
* @param[in] b vector2
*
* @return dot product
*/
f_inline
float
glm_vec3_dot(vec3 a, vec3 b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
/*!
* @brief norm * norm (magnitude) of vec
*
* we can use this func instead of calling norm * norm, because it would call
* sqrtf fuction twice but with this func we can avoid func call, maybe this is
* not good name for this func
*
* @param[in] v vector
*
* @return norm * norm
*/
f_inline
float
glm_vec3_norm2(vec3 v) {
return glm_vec3_dot(v, v);
}
/*!
* @brief euclidean norm (magnitude), also called L2 norm
* this will give magnitude of vector in euclidean space
*
* @param[in] v vector
*
* @return norm
*/
f_inline
float
glm_vec3_norm(vec3 v) {
return sqrtf(glm_vec3_norm2(v));
}
/*!
* @brief L1 norm of vec3
* Also known as Manhattan Distance or Taxicab norm.
* L1 Norm is the sum of the magnitudes of the vectors in a space.
* It is calculated as the sum of the absolute values of the vector components.
* In this norm, all the components of the vector are weighted equally.
*
* This computes:
* R = |v[0]| + |v[1]| + |v[2]|
*
* @param[in] v vector
*
* @return L1 norm
*/
f_inline
float
glm_vec3_norm_one(vec3 v) {
vec3 t;
glm_vec3_abs(v, t);
return glm_vec3_hadd(t);
}
/*!
* @brief infinity norm of vec3
* Also known as Maximum norm.
* Infinity Norm is the largest magnitude among each element of a vector.
* It is calculated as the maximum of the absolute values of the vector components.
*
* This computes:
* inf norm = max(|v[0]|, |v[1]|, |v[2]|)
*
* @param[in] v vector
*
* @return infinity norm
*/
f_inline
float
glm_vec3_norm_inf(vec3 v) {
vec3 t;
glm_vec3_abs(v, t);
return glm_vec3_max(t);
}
/*!
* @brief add a vector to b vector store result in dest
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination vector
*/
f_inline
void
glm_vec3_add(vec3 a, vec3 b, vec3 dest) {
dest[0] = a[0] + b[0];
dest[1] = a[1] + b[1];
dest[2] = a[2] + b[2];
}
/*!
* @brief add scalar to v vector store result in dest (d = v + s)
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
f_inline
void
glm_vec3_adds(vec3 v, float s, vec3 dest) {
dest[0] = v[0] + s;
dest[1] = v[1] + s;
dest[2] = v[2] + s;
}
/*!
* @brief subtract b vector from a vector store result in dest
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination vector
*/
f_inline
void
glm_vec3_sub(vec3 a, vec3 b, vec3 dest) {
dest[0] = a[0] - b[0];
dest[1] = a[1] - b[1];
dest[2] = a[2] - b[2];
}
/*!
* @brief subtract scalar from v vector store result in dest (d = v - s)
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
f_inline
void
glm_vec3_subs(vec3 v, float s, vec3 dest) {
dest[0] = v[0] - s;
dest[1] = v[1] - s;
dest[2] = v[2] - s;
}
/*!
* @brief multiply two vector (component-wise multiplication)
*
* @param a vector1
* @param b vector2
* @param dest v3 = (a[0] * b[0], a[1] * b[1], a[2] * b[2])
*/
f_inline
void
glm_vec3_mul(vec3 a, vec3 b, vec3 dest) {
dest[0] = a[0] * b[0];
dest[1] = a[1] * b[1];
dest[2] = a[2] * b[2];
}
/*!
* @brief multiply/scale vec3 vector with scalar: result = v * s
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
f_inline
void
glm_vec3_scale(vec3 v, float s, vec3 dest) {
dest[0] = v[0] * s;
dest[1] = v[1] * s;
dest[2] = v[2] * s;
}
/*!
* @brief make vec3 vector scale as specified: result = unit(v) * s
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
f_inline
void
glm_vec3_scale_as(vec3 v, float s, vec3 dest) {
float norm;
norm = glm_vec3_norm(v);
if (norm == 0.0f) {
glm_vec3_zero(dest);
return;
}
glm_vec3_scale(v, s / norm, dest);
}
/*!
* @brief div vector with another component-wise division: d = a / b
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest result = (a[0]/b[0], a[1]/b[1], a[2]/b[2])
*/
f_inline
void
glm_vec3_div(vec3 a, vec3 b, vec3 dest) {
dest[0] = a[0] / b[0];
dest[1] = a[1] / b[1];
dest[2] = a[2] / b[2];
}
/*!
* @brief div vector with scalar: d = v / s
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest result = (a[0]/s, a[1]/s, a[2]/s)
*/
f_inline
void
glm_vec3_divs(vec3 v, float s, vec3 dest) {
dest[0] = v[0] / s;
dest[1] = v[1] / s;
dest[2] = v[2] / s;
}
/*!
* @brief add two vectors and add result to sum
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a + b)
*/
f_inline
void
glm_vec3_addadd(vec3 a, vec3 b, vec3 dest) {
dest[0] += a[0] + b[0];
dest[1] += a[1] + b[1];
dest[2] += a[2] + b[2];
}
/*!
* @brief sub two vectors and add result to dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a + b)
*/
f_inline
void
glm_vec3_subadd(vec3 a, vec3 b, vec3 dest) {
dest[0] += a[0] - b[0];
dest[1] += a[1] - b[1];
dest[2] += a[2] - b[2];
}
/*!
* @brief mul two vectors and add result to dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a * b)
*/
f_inline
void
glm_vec3_muladd(vec3 a, vec3 b, vec3 dest) {
dest[0] += a[0] * b[0];
dest[1] += a[1] * b[1];
dest[2] += a[2] * b[2];
}
/*!
* @brief mul vector with scalar and add result to sum
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector
* @param[in] s scalar
* @param[out] dest dest += (a * b)
*/
f_inline
void
glm_vec3_muladds(vec3 a, float s, vec3 dest) {
dest[0] += a[0] * s;
dest[1] += a[1] * s;
dest[2] += a[2] * s;
}
/*!
* @brief add max of two vector to result/dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += max(a, b)
*/
f_inline
void
glm_vec3_maxadd(vec3 a, vec3 b, vec3 dest) {
dest[0] += glm_max(a[0], b[0]);
dest[1] += glm_max(a[1], b[1]);
dest[2] += glm_max(a[2], b[2]);
}
/*!
* @brief add min of two vector to result/dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += min(a, b)
*/
f_inline
void
glm_vec3_minadd(vec3 a, vec3 b, vec3 dest) {
dest[0] += glm_min(a[0], b[0]);
dest[1] += glm_min(a[1], b[1]);
dest[2] += glm_min(a[2], b[2]);
}
/*!
* @brief negate vector components and store result in dest
*
* @param[in] v vector
* @param[out] dest result vector
*/
f_inline
void
glm_vec3_negate_to(vec3 v, vec3 dest) {
dest[0] = -v[0];
dest[1] = -v[1];
dest[2] = -v[2];
}
/*!
* @brief negate vector components
*
* @param[in, out] v vector
*/
f_inline
void
glm_vec3_negate(vec3 v) {
glm_vec3_negate_to(v, v);
}
/*!
* @brief normalize vec3 and store result in same vec
*
* @param[in, out] v vector
*/
f_inline
void
glm_vec3_normalize(vec3 v) {
float norm;
norm = glm_vec3_norm(v);
if (norm == 0.0f) {
v[0] = v[1] = v[2] = 0.0f;
return;
}
glm_vec3_scale(v, 1.0f / norm, v);
}
/*!
* @brief normalize vec3 to dest
*
* @param[in] v source
* @param[out] dest destination
*/
f_inline
void
glm_vec3_normalize_to(vec3 v, vec3 dest) {
float norm;
norm = glm_vec3_norm(v);
if (norm == 0.0f) {
glm_vec3_zero(dest);
return;
}
glm_vec3_scale(v, 1.0f / norm, dest);
}
/*!
* @brief cross product of two vector (RH)
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest destination
*/
f_inline
void
glm_vec3_cross(vec3 a, vec3 b, vec3 dest) {
vec3 c;
/* (u2.v3 - u3.v2, u3.v1 - u1.v3, u1.v2 - u2.v1) */
c[0] = a[1] * b[2] - a[2] * b[1];
c[1] = a[2] * b[0] - a[0] * b[2];
c[2] = a[0] * b[1] - a[1] * b[0];
glm_vec3_copy(c, dest);
}
/*!
* @brief cross product of two vector (RH) and normalize the result
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest destination
*/
f_inline
void
glm_vec3_crossn(vec3 a, vec3 b, vec3 dest) {
glm_vec3_cross(a, b, dest);
glm_vec3_normalize(dest);
}
/*!
* @brief angle betwen two vector
*
* @param[in] a vector1
* @param[in] b vector2
*
* @return angle as radians
*/
f_inline
float
glm_vec3_angle(vec3 a, vec3 b) {
float norm, dot;
/* maybe compiler generate approximation instruction (rcp) */
norm = 1.0f / (glm_vec3_norm(a) * glm_vec3_norm(b));
dot = glm_vec3_dot(a, b) * norm;
if (dot > 1.0f)
return 0.0f;
else if (dot < -1.0f)
return GLM_PIf;
return acosf(dot);
}
/*!
* @brief rotate vec3 around axis by angle using Rodrigues' rotation formula
*
* @param[in, out] v vector
* @param[in] axis axis vector (must be unit vector)
* @param[in] angle angle by radians
*/
f_inline
void
glm_vec3_rotate(vec3 v, float angle, vec3 axis) {
vec3 v1, v2, k;
float c, s;
c = cosf(angle);
s = sinf(angle);
glm_vec3_normalize_to(axis, k);
/* Right Hand, Rodrigues' rotation formula:
v = v*cos(t) + (kxv)sin(t) + k*(k.v)(1 - cos(t))
*/
glm_vec3_scale(v, c, v1);
glm_vec3_cross(k, v, v2);
glm_vec3_scale(v2, s, v2);
glm_vec3_add(v1, v2, v1);
glm_vec3_scale(k, glm_vec3_dot(k, v) * (1.0f - c), v2);
glm_vec3_add(v1, v2, v);
}
/*!
* @brief apply rotation matrix to vector
*
* matrix format should be (no perspective):
* a b c x
* e f g y
* i j k z
* 0 0 0 w
*
* @param[in] m affine matrix or rot matrix
* @param[in] v vector
* @param[out] dest rotated vector
*/
f_inline
void
glm_vec3_rotate_m4(mat4 m, vec3 v, vec3 dest) {
vec4 x, y, z, res;
glm_vec4_normalize_to(m[0], x);
glm_vec4_normalize_to(m[1], y);
glm_vec4_normalize_to(m[2], z);
glm_vec4_scale(x, v[0], res);
glm_vec4_muladds(y, v[1], res);
glm_vec4_muladds(z, v[2], res);
glm_vec3(res, dest);
}
/*!
* @brief apply rotation matrix to vector
*
* @param[in] m affine matrix or rot matrix
* @param[in] v vector
* @param[out] dest rotated vector
*/
f_inline
void
glm_vec3_rotate_m3(mat3 m, vec3 v, vec3 dest) {
vec4 res, x, y, z;
glm_vec4(m[0], 0.0f, x);
glm_vec4(m[1], 0.0f, y);
glm_vec4(m[2], 0.0f, z);
glm_vec4_normalize(x);
glm_vec4_normalize(y);
glm_vec4_normalize(z);
glm_vec4_scale(x, v[0], res);
glm_vec4_muladds(y, v[1], res);
glm_vec4_muladds(z, v[2], res);
glm_vec3(res, dest);
}
/*!
* @brief project a vector onto b vector
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest projected vector
*/
f_inline
void
glm_vec3_proj(vec3 a, vec3 b, vec3 dest) {
glm_vec3_scale(b,
glm_vec3_dot(a, b) / glm_vec3_norm2(b),
dest);
}
/**
* @brief find center point of two vector
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest center point
*/
f_inline
void
glm_vec3_center(vec3 a, vec3 b, vec3 dest) {
glm_vec3_add(a, b, dest);
glm_vec3_scale(dest, 0.5f, dest);
}
/**
* @brief squared distance between two vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @return returns squared distance (distance * distance)
*/
f_inline
float
glm_vec3_distance2(vec3 a, vec3 b) {
return glm_pow2(a[0] - b[0])
+ glm_pow2(a[1] - b[1])
+ glm_pow2(a[2] - b[2]);
}
/**
* @brief distance between two vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @return returns distance
*/
f_inline
float
glm_vec3_distance(vec3 a, vec3 b) {
return sqrtf(glm_vec3_distance2(a, b));
}
/*!
* @brief max values of vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination
*/
f_inline
void
glm_vec3_maxv(vec3 a, vec3 b, vec3 dest) {
dest[0] = glm_max(a[0], b[0]);
dest[1] = glm_max(a[1], b[1]);
dest[2] = glm_max(a[2], b[2]);
}
/*!
* @brief min values of vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination
*/
f_inline
void
glm_vec3_minv(vec3 a, vec3 b, vec3 dest) {
dest[0] = glm_min(a[0], b[0]);
dest[1] = glm_min(a[1], b[1]);
dest[2] = glm_min(a[2], b[2]);
}
/*!
* @brief possible orthogonal/perpendicular vector
*
* @param[in] v vector
* @param[out] dest orthogonal/perpendicular vector
*/
f_inline
void
glm_vec3_ortho(vec3 v, vec3 dest) {
float ignore;
float f = modff(fabsf(v[0]) + 0.5f, &ignore);
vec3 result = {-v[1], v[0] - f * v[2], f * v[1]};
glm_vec3_copy(result, dest);
}
/*!
* @brief clamp vector's individual members between min and max values
*
* @param[in, out] v vector
* @param[in] minVal minimum value
* @param[in] maxVal maximum value
*/
f_inline
void
glm_vec3_clamp(vec3 v, float minVal, float maxVal) {
v[0] = glm_clamp(v[0], minVal, maxVal);
v[1] = glm_clamp(v[1], minVal, maxVal);
v[2] = glm_clamp(v[2], minVal, maxVal);
}
/*!
* @brief linear interpolation between two vectors
*
* formula: from + s * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount)
* @param[out] dest destination
*/
f_inline
void
glm_vec3_lerp(vec3 from, vec3 to, float t, vec3 dest) {
vec3 s, v;
/* from + s * (to - from) */
glm_vec3_broadcast(t, s);
glm_vec3_sub(to, from, v);
glm_vec3_mul(s, v, v);
glm_vec3_add(from, v, dest);
}
/*!
* @brief linear interpolation between two vectors (clamped)
*
* formula: from + s * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount) clamped between 0 and 1
* @param[out] dest destination
*/
f_inline
void
glm_vec3_lerpc(vec3 from, vec3 to, float t, vec3 dest) {
glm_vec3_lerp(from, to, glm_clamp_zo(t), dest);
}
/*!
* @brief linear interpolation between two vectors
*
* formula: from + s * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount)
* @param[out] dest destination
*/
f_inline
void
glm_vec3_mix(vec3 from, vec3 to, float t, vec3 dest) {
glm_vec3_lerp(from, to, t, dest);
}
/*!
* @brief linear interpolation between two vectors (clamped)
*
* formula: from + s * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount) clamped between 0 and 1
* @param[out] dest destination
*/
f_inline
void
glm_vec3_mixc(vec3 from, vec3 to, float t, vec3 dest) {
glm_vec3_lerpc(from, to, t, dest);
}
/*!
* @brief threshold function (unidimensional)
*
* @param[in] edge threshold
* @param[in] x value to test against threshold
* @param[out] dest destination
*/
f_inline
void
glm_vec3_step_uni(float edge, vec3 x, vec3 dest) {
dest[0] = glm_step(edge, x[0]);
dest[1] = glm_step(edge, x[1]);
dest[2] = glm_step(edge, x[2]);
}
/*!
* @brief threshold function
*
* @param[in] edge threshold
* @param[in] x value to test against threshold
* @param[out] dest destination
*/
f_inline
void
glm_vec3_step(vec3 edge, vec3 x, vec3 dest) {
dest[0] = glm_step(edge[0], x[0]);
dest[1] = glm_step(edge[1], x[1]);
dest[2] = glm_step(edge[2], x[2]);
}
/*!
* @brief threshold function with a smooth transition (unidimensional)
*
* @param[in] edge0 low threshold
* @param[in] edge1 high threshold
* @param[in] x value to test against threshold
* @param[out] dest destination
*/
f_inline
void
glm_vec3_smoothstep_uni(float edge0, float edge1, vec3 x, vec3 dest) {
dest[0] = glm_smoothstep(edge0, edge1, x[0]);
dest[1] = glm_smoothstep(edge0, edge1, x[1]);
dest[2] = glm_smoothstep(edge0, edge1, x[2]);
}
/*!
* @brief threshold function with a smooth transition
*
* @param[in] edge0 low threshold
* @param[in] edge1 high threshold
* @param[in] x value to test against threshold
* @param[out] dest destination
*/
f_inline
void
glm_vec3_smoothstep(vec3 edge0, vec3 edge1, vec3 x, vec3 dest) {
dest[0] = glm_smoothstep(edge0[0], edge1[0], x[0]);
dest[1] = glm_smoothstep(edge0[1], edge1[1], x[1]);
dest[2] = glm_smoothstep(edge0[2], edge1[2], x[2]);
}
/*!
* @brief smooth Hermite interpolation between two vectors
*
* formula: from + s * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount)
* @param[out] dest destination
*/
f_inline
void
glm_vec3_smoothinterp(vec3 from, vec3 to, float t, vec3 dest) {
vec3 s, v;
/* from + s * (to - from) */
glm_vec3_broadcast(glm_smooth(t), s);
glm_vec3_sub(to, from, v);
glm_vec3_mul(s, v, v);
glm_vec3_add(from, v, dest);
}
/*!
* @brief smooth Hermite interpolation between two vectors (clamped)
*
* formula: from + s * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount) clamped between 0 and 1
* @param[out] dest destination
*/
f_inline
void
glm_vec3_smoothinterpc(vec3 from, vec3 to, float t, vec3 dest) {
glm_vec3_smoothinterp(from, to, glm_clamp_zo(t), dest);
}
/*!
* @brief swizzle vector components
*
* you can use existin masks e.g. GLM_XXX, GLM_ZYX
*
* @param[in] v source
* @param[in] mask mask
* @param[out] dest destination
*/
f_inline
void
glm_vec3_swizzle(vec3 v, int mask, vec3 dest) {
vec3 t;
t[0] = v[(mask & (3 << 0))];
t[1] = v[(mask & (3 << 2)) >> 2];
t[2] = v[(mask & (3 << 4)) >> 4];
glm_vec3_copy(t, dest);
}
/*!
* @brief vec3 cross product
*
* this is just convenient wrapper
*
* @param[in] a source 1
* @param[in] b source 2
* @param[out] d destination
*/
f_inline
void
glm_cross(vec3 a, vec3 b, vec3 d) {
glm_vec3_cross(a, b, d);
}
/*!
* @brief vec3 dot product
*
* this is just convenient wrapper
*
* @param[in] a vector1
* @param[in] b vector2
*
* @return dot product
*/
f_inline
float
glm_dot(vec3 a, vec3 b) {
return glm_vec3_dot(a, b);
}
/*!
* @brief normalize vec3 and store result in same vec
*
* this is just convenient wrapper
*
* @param[in, out] v vector
*/
f_inline
void
glm_normalize(vec3 v) {
glm_vec3_normalize(v);
}
/*!
* @brief normalize vec3 to dest
*
* this is just convenient wrapper
*
* @param[in] v source
* @param[out] dest destination
*/
f_inline
void
glm_normalize_to(vec3 v, vec3 dest) {
glm_vec3_normalize_to(v, dest);
}
#define GLM_IVEC2_ONE_INIT {1, 1}
#define GLM_IVEC2_ZERO_INIT {0, 0}
#define GLM_IVEC2_ONE ((ivec2)GLM_IVEC2_ONE_INIT)
#define GLM_IVEC2_ZERO ((ivec2)GLM_IVEC2_ZERO_INIT)
/*!
* @brief init ivec2 using vec3 or vec4
*
* @param[in] v vector
* @param[out] dest destination
*/
f_inline
void
glm_ivec2(int * __restrict v, ivec2 dest) {
dest[0] = v[0];
dest[1] = v[1];
}
/*!
* @brief copy all members of [a] to [dest]
*
* @param[in] a source vector
* @param[out] dest destination
*/
f_inline
void
glm_ivec2_copy(ivec2 a, ivec2 dest) {
dest[0] = a[0];
dest[1] = a[1];
}
/*!
* @brief set all members of [v] to zero
*
* @param[out] v vector
*/
f_inline
void
glm_ivec2_zero(ivec2 v) {
v[0] = v[1] = 0;
}
/*!
* @brief set all members of [v] to one
*
* @param[out] v vector
*/
f_inline
void
glm_ivec2_one(ivec2 v) {
v[0] = v[1] = 1;
}
/*!
* @brief add vector [a] to vector [b] and store result in [dest]
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
f_inline
void
glm_ivec2_add(ivec2 a, ivec2 b, ivec2 dest) {
dest[0] = a[0] + b[0];
dest[1] = a[1] + b[1];
}
/*!
* @brief add scalar s to vector [v] and store result in [dest]
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination
*/
f_inline
void
glm_ivec2_adds(ivec2 v, int s, ivec2 dest) {
dest[0] = v[0] + s;
dest[1] = v[1] + s;
}
/*!
* @brief subtract vector [b] from vector [a] and store result in [dest]
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
f_inline
void
glm_ivec2_sub(ivec2 a, ivec2 b, ivec2 dest) {
dest[0] = a[0] - b[0];
dest[1] = a[1] - b[1];
}
/*!
* @brief subtract scalar s from vector [v] and store result in [dest]
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination
*/
f_inline
void
glm_ivec2_subs(ivec2 v, int s, ivec2 dest) {
dest[0] = v[0] - s;
dest[1] = v[1] - s;
}
/*!
* @brief multiply vector [a] with vector [b] and store result in [dest]
*
* @param[in] a frist vector
* @param[in] b second vector
* @param[out] dest destination
*/
f_inline
void
glm_ivec2_mul(ivec2 a, ivec2 b, ivec2 dest) {
dest[0] = a[0] * b[0];
dest[1] = a[1] * b[1];
}
/*!
* @brief multiply vector [a] with scalar s and store result in [dest]
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination
*/
f_inline
void
glm_ivec2_scale(ivec2 v, int s, ivec2 dest) {
dest[0] = v[0] * s;
dest[1] = v[1] * s;
}
/*!
* @brief squared distance between two vectors
*
* @param[in] a first vector
* @param[in] b second vector
* @return returns squared distance (distance * distance)
*/
f_inline
int
glm_ivec2_distance2(ivec2 a, ivec2 b) {
int xd, yd;
xd = a[0] - b[0];
yd = a[1] - b[1];
return xd * xd + yd * yd;
}
/*!
* @brief distance between two vectors
*
* @param[in] a first vector
* @param[in] b second vector
* @return returns distance
*/
f_inline
float
glm_ivec2_distance(ivec2 a, ivec2 b) {
return sqrtf((float)glm_ivec2_distance2(a, b));
}
/*!
* @brief set each member of dest to greater of vector a and b
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
f_inline
void
glm_ivec2_maxv(ivec2 a, ivec2 b, ivec2 dest) {
dest[0] = a[0] > b[0] ? a[0] : b[0];
dest[1] = a[1] > b[1] ? a[1] : b[1];
}
/*!
* @brief set each member of dest to lesser of vector a and b
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
f_inline
void
glm_ivec2_minv(ivec2 a, ivec2 b, ivec2 dest) {
dest[0] = a[0] < b[0] ? a[0] : b[0];
dest[1] = a[1] < b[1] ? a[1] : b[1];
}
/*!
* @brief clamp each member of [v] between minVal and maxVal (inclusive)
*
* @param[in, out] v vector
* @param[in] minVal minimum value
* @param[in] maxVal maximum value
*/
f_inline
void
glm_ivec2_clamp(ivec2 v, int minVal, int maxVal) {
if (v[0] < minVal)
v[0] = minVal;
else if(v[0] > maxVal)
v[0] = maxVal;
if (v[1] < minVal)
v[1] = minVal;
else if(v[1] > maxVal)
v[1] = maxVal;
}
/*!
* @brief absolute value of v
*
* @param[in] v vector
* @param[out] dest destination
*/
f_inline
void
glm_ivec2_abs(ivec2 v, ivec2 dest) {
dest[0] = abs(v[0]);
dest[1] = abs(v[1]);
}
#define GLM_IVEC3_ONE_INIT {1, 1, 1}
#define GLM_IVEC3_ZERO_INIT {0, 0, 0}
#define GLM_IVEC3_ONE ((ivec3)GLM_IVEC3_ONE_INIT)
#define GLM_IVEC3_ZERO ((ivec3)GLM_IVEC3_ZERO_INIT)
/*!
* @brief init ivec3 using ivec4
*
* @param[in] v4 vector4
* @param[out] dest destination
*/
f_inline
void
glm_ivec3(ivec4 v4, ivec3 dest) {
dest[0] = v4[0];
dest[1] = v4[1];
dest[2] = v4[2];
}
/*!
* @brief copy all members of [a] to [dest]
*
* @param[in] a source vector
* @param[out] dest destination
*/
f_inline
void
glm_ivec3_copy(ivec3 a, ivec3 dest) {
dest[0] = a[0];
dest[1] = a[1];
dest[2] = a[2];
}
/*!
* @brief set all members of [v] to zero
*
* @param[out] v vector
*/
f_inline
void
glm_ivec3_zero(ivec3 v) {
v[0] = v[1] = v[2] = 0;
}
/*!
* @brief set all members of [v] to one
*
* @param[out] v vector
*/
f_inline
void
glm_ivec3_one(ivec3 v) {
v[0] = v[1] = v[2] = 1;
}
/*!
* @brief add vector [a] to vector [b] and store result in [dest]
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
f_inline
void
glm_ivec3_add(ivec3 a, ivec3 b, ivec3 dest) {
dest[0] = a[0] + b[0];
dest[1] = a[1] + b[1];
dest[2] = a[2] + b[2];
}
/*!
* @brief add scalar s to vector [v] and store result in [dest]
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination
*/
f_inline
void
glm_ivec3_adds(ivec3 v, int s, ivec3 dest) {
dest[0] = v[0] + s;
dest[1] = v[1] + s;
dest[2] = v[2] + s;
}
/*!
* @brief subtract vector [b] from vector [a] and store result in [dest]
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
f_inline
void
glm_ivec3_sub(ivec3 a, ivec3 b, ivec3 dest) {
dest[0] = a[0] - b[0];
dest[1] = a[1] - b[1];
dest[2] = a[2] - b[2];
}
/*!
* @brief subtract scalar s from vector [v] and store result in [dest]
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination
*/
f_inline
void
glm_ivec3_subs(ivec3 v, int s, ivec3 dest) {
dest[0] = v[0] - s;
dest[1] = v[1] - s;
dest[2] = v[2] - s;
}
/*!
* @brief multiply vector [a] with vector [b] and store result in [dest]
*
* @param[in] a frist vector
* @param[in] b second vector
* @param[out] dest destination
*/
f_inline
void
glm_ivec3_mul(ivec3 a, ivec3 b, ivec3 dest) {
dest[0] = a[0] * b[0];
dest[1] = a[1] * b[1];
dest[2] = a[2] * b[2];
}
/*!
* @brief multiply vector [a] with scalar s and store result in [dest]
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination
*/
f_inline
void
glm_ivec3_scale(ivec3 v, int s, ivec3 dest) {
dest[0] = v[0] * s;
dest[1] = v[1] * s;
dest[2] = v[2] * s;
}
/*!
* @brief squared distance between two vectors
*
* @param[in] a first vector
* @param[in] b second vector
* @return returns squared distance (distance * distance)
*/
f_inline
int
glm_ivec3_distance2(ivec3 a, ivec3 b) {
int xd, yd, zd;
xd = a[0] - b[0];
yd = a[1] - b[1];
zd = a[2] - b[2];
return xd * xd + yd * yd + zd * zd;
}
/*!
* @brief distance between two vectors
*
* @param[in] a first vector
* @param[in] b second vector
* @return returns distance
*/
f_inline
float
glm_ivec3_distance(ivec3 a, ivec3 b) {
return sqrtf((float)glm_ivec3_distance2(a, b));
}
/*!
* @brief set each member of dest to greater of vector a and b
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
f_inline
void
glm_ivec3_maxv(ivec3 a, ivec3 b, ivec3 dest) {
dest[0] = a[0] > b[0] ? a[0] : b[0];
dest[1] = a[1] > b[1] ? a[1] : b[1];
dest[2] = a[2] > b[2] ? a[2] : b[2];
}
/*!
* @brief set each member of dest to lesser of vector a and b
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
f_inline
void
glm_ivec3_minv(ivec3 a, ivec3 b, ivec3 dest) {
dest[0] = a[0] < b[0] ? a[0] : b[0];
dest[1] = a[1] < b[1] ? a[1] : b[1];
dest[2] = a[2] < b[2] ? a[2] : b[2];
}
/*!
* @brief clamp each member of [v] between minVal and maxVal (inclusive)
*
* @param[in, out] v vector
* @param[in] minVal minimum value
* @param[in] maxVal maximum value
*/
f_inline
void
glm_ivec3_clamp(ivec3 v, int minVal, int maxVal) {
if (v[0] < minVal)
v[0] = minVal;
else if(v[0] > maxVal)
v[0] = maxVal;
if (v[1] < minVal)
v[1] = minVal;
else if(v[1] > maxVal)
v[1] = maxVal;
if (v[2] < minVal)
v[2] = minVal;
else if(v[2] > maxVal)
v[2] = maxVal;
}
/*!
* @brief absolute value of v
*
* @param[in] v vector
* @param[out] dest destination
*/
f_inline
void
glm_ivec3_abs(ivec3 v, ivec3 dest) {
dest[0] = abs(v[0]);
dest[1] = abs(v[1]);
dest[2] = abs(v[2]);
}
#define GLM_IVEC4_ONE_INIT {1, 1, 1, 1}
#define GLM_IVEC4_ZERO_INIT {0, 0, 0, 0}
#define GLM_IVEC4_ONE ((ivec4)GLM_IVEC4_ONE_INIT)
#define GLM_IVEC4_ZERO ((ivec4)GLM_IVEC4_ZERO_INIT)
/*!
* @brief init ivec4 using ivec3
*
* @param[in] v3 vector3
* @param[in] last last item
* @param[out] dest destination
*/
f_inline
void
glm_ivec4(ivec3 v3, int last, ivec4 dest) {
dest[0] = v3[0];
dest[1] = v3[1];
dest[2] = v3[2];
dest[3] = last;
}
/*!
* @brief copy all members of [a] to [dest]
*
* @param[in] a source vector
* @param[out] dest destination
*/
f_inline
void
glm_ivec4_copy(ivec4 a, ivec4 dest) {
dest[0] = a[0];
dest[1] = a[1];
dest[2] = a[2];
dest[3] = a[3];
}
/*!
* @brief set all members of [v] to zero
*
* @param[out] v vector
*/
f_inline
void
glm_ivec4_zero(ivec4 v) {
v[0] = v[1] = v[2] = v[3] = 0;
}
/*!
* @brief set all members of [v] to one
*
* @param[out] v vector
*/
f_inline
void
glm_ivec4_one(ivec4 v) {
v[0] = v[1] = v[2] = v[3] = 1;
}
/*!
* @brief add vector [a] to vector [b] and store result in [dest]
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
f_inline
void
glm_ivec4_add(ivec4 a, ivec4 b, ivec4 dest) {
dest[0] = a[0] + b[0];
dest[1] = a[1] + b[1];
dest[2] = a[2] + b[2];
dest[3] = a[3] + b[3];
}
/*!
* @brief add scalar s to vector [v] and store result in [dest]
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination
*/
f_inline
void
glm_ivec4_adds(ivec4 v, int s, ivec4 dest) {
dest[0] = v[0] + s;
dest[1] = v[1] + s;
dest[2] = v[2] + s;
dest[3] = v[3] + s;
}
/*!
* @brief subtract vector [b] from vector [a] and store result in [dest]
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
f_inline
void
glm_ivec4_sub(ivec4 a, ivec4 b, ivec4 dest) {
dest[0] = a[0] - b[0];
dest[1] = a[1] - b[1];
dest[2] = a[2] - b[2];
dest[3] = a[3] - b[3];
}
/*!
* @brief subtract scalar s from vector [v] and store result in [dest]
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination
*/
f_inline
void
glm_ivec4_subs(ivec4 v, int s, ivec4 dest) {
dest[0] = v[0] - s;
dest[1] = v[1] - s;
dest[2] = v[2] - s;
dest[3] = v[3] - s;
}
/*!
* @brief multiply vector [a] with vector [b] and store result in [dest]
*
* @param[in] a frist vector
* @param[in] b second vector
* @param[out] dest destination
*/
f_inline
void
glm_ivec4_mul(ivec4 a, ivec4 b, ivec4 dest) {
dest[0] = a[0] * b[0];
dest[1] = a[1] * b[1];
dest[2] = a[2] * b[2];
dest[3] = a[3] * b[3];
}
/*!
* @brief multiply vector [a] with scalar s and store result in [dest]
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination
*/
f_inline
void
glm_ivec4_scale(ivec4 v, int s, ivec4 dest) {
dest[0] = v[0] * s;
dest[1] = v[1] * s;
dest[2] = v[2] * s;
dest[3] = v[3] * s;
}
/*!
* @brief squared distance between two vectors
*
* @param[in] a first vector
* @param[in] b second vector
* @return returns squared distance (distance * distance)
*/
f_inline
int
glm_ivec4_distance2(ivec4 a, ivec4 b) {
int xd, yd, zd, wd;
xd = a[0] - b[0];
yd = a[1] - b[1];
zd = a[2] - b[2];
wd = a[3] - b[3];
return xd * xd + yd * yd + zd * zd + wd * wd;
}
/*!
* @brief distance between two vectors
*
* @param[in] a first vector
* @param[in] b second vector
* @return returns distance
*/
f_inline
float
glm_ivec4_distance(ivec4 a, ivec4 b) {
return sqrtf((float)glm_ivec4_distance2(a, b));
}
/*!
* @brief set each member of dest to greater of vector a and b
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
f_inline
void
glm_ivec4_maxv(ivec4 a, ivec4 b, ivec4 dest) {
dest[0] = a[0] > b[0] ? a[0] : b[0];
dest[1] = a[1] > b[1] ? a[1] : b[1];
dest[2] = a[2] > b[2] ? a[2] : b[2];
dest[3] = a[3] > b[3] ? a[3] : b[3];
}
/*!
* @brief set each member of dest to lesser of vector a and b
*
* @param[in] a first vector
* @param[in] b second vector
* @param[out] dest destination
*/
f_inline
void
glm_ivec4_minv(ivec4 a, ivec4 b, ivec4 dest) {
dest[0] = a[0] < b[0] ? a[0] : b[0];
dest[1] = a[1] < b[1] ? a[1] : b[1];
dest[2] = a[2] < b[2] ? a[2] : b[2];
dest[3] = a[3] < b[3] ? a[3] : b[3];
}
/*!
* @brief clamp each member of [v] between minVal and maxVal (inclusive)
*
* @param[in, out] v vector
* @param[in] minVal minimum value
* @param[in] maxVal maximum value
*/
f_inline
void
glm_ivec4_clamp(ivec4 v, int minVal, int maxVal) {
if (v[0] < minVal)
v[0] = minVal;
else if(v[0] > maxVal)
v[0] = maxVal;
if (v[1] < minVal)
v[1] = minVal;
else if(v[1] > maxVal)
v[1] = maxVal;
if (v[2] < minVal)
v[2] = minVal;
else if(v[2] > maxVal)
v[2] = maxVal;
if (v[3] < minVal)
v[3] = minVal;
else if(v[3] > maxVal)
v[3] = maxVal;
}
/*!
* @brief absolute value of v
*
* @param[in] v vector
* @param[out] dest destination
*/
f_inline
void
glm_ivec4_abs(ivec4 v, ivec4 dest) {
dest[0] = abs(v[0]);
dest[1] = abs(v[1]);
dest[2] = abs(v[2]);
dest[3] = abs(v[3]);
}
#ifdef CGLM_SIMD
#if defined( __SSE__ ) || defined( __SSE2__ )
f_inline
void
glm_mat4_scale_sse2(mat4 m, float s) {
__m128 x0;
x0 = _mm_set1_ps(s);
glmm_store(m[0], _mm_mul_ps(glmm_load(m[0]), x0));
glmm_store(m[1], _mm_mul_ps(glmm_load(m[1]), x0));
glmm_store(m[2], _mm_mul_ps(glmm_load(m[2]), x0));
glmm_store(m[3], _mm_mul_ps(glmm_load(m[3]), x0));
}
f_inline
void
glm_mat4_transp_sse2(mat4 m, mat4 dest) {
__m128 r0, r1, r2, r3;
r0 = glmm_load(m[0]);
r1 = glmm_load(m[1]);
r2 = glmm_load(m[2]);
r3 = glmm_load(m[3]);
_MM_TRANSPOSE4_PS(r0, r1, r2, r3);
glmm_store(dest[0], r0);
glmm_store(dest[1], r1);
glmm_store(dest[2], r2);
glmm_store(dest[3], r3);
}
f_inline
void
glm_mat4_mul_sse2(mat4 m1, mat4 m2, mat4 dest) {
/* D = R * L (Column-Major) */
glmm_128 l, r0, r1, r2, r3, v0, v1, v2, v3;
l = glmm_load(m1[0]);
r0 = glmm_load(m2[0]);
r1 = glmm_load(m2[1]);
r2 = glmm_load(m2[2]);
r3 = glmm_load(m2[3]);
v0 = _mm_mul_ps(glmm_splat_x(r0), l);
v1 = _mm_mul_ps(glmm_splat_x(r1), l);
v2 = _mm_mul_ps(glmm_splat_x(r2), l);
v3 = _mm_mul_ps(glmm_splat_x(r3), l);
l = glmm_load(m1[1]);
v0 = glmm_fmadd(glmm_splat_y(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_y(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_y(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_y(r3), l, v3);
l = glmm_load(m1[2]);
v0 = glmm_fmadd(glmm_splat_z(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_z(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_z(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_z(r3), l, v3);
l = glmm_load(m1[3]);
v0 = glmm_fmadd(glmm_splat_w(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_w(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_w(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_w(r3), l, v3);
glmm_store(dest[0], v0);
glmm_store(dest[1], v1);
glmm_store(dest[2], v2);
glmm_store(dest[3], v3);
}
f_inline
void
glm_mat4_mulv_sse2(mat4 m, vec4 v, vec4 dest) {
__m128 x0, x1, m0, m1, m2, m3, v0, v1, v2, v3;
m0 = glmm_load(m[0]);
m1 = glmm_load(m[1]);
m2 = glmm_load(m[2]);
m3 = glmm_load(m[3]);
x0 = glmm_load(v);
v0 = glmm_splat_x(x0);
v1 = glmm_splat_y(x0);
v2 = glmm_splat_z(x0);
v3 = glmm_splat_w(x0);
x1 = _mm_mul_ps(m3, v3);
x1 = glmm_fmadd(m2, v2, x1);
x1 = glmm_fmadd(m1, v1, x1);
x1 = glmm_fmadd(m0, v0, x1);
glmm_store(dest, x1);
}
f_inline
float
glm_mat4_det_sse2(mat4 mat) {
__m128 r0, r1, r2, r3, x0, x1, x2;
/* 127 <- 0, [square] det(A) = det(At) */
r0 = glmm_load(mat[0]); /* d c b a */
r1 = glmm_load(mat[1]); /* h g f e */
r2 = glmm_load(mat[2]); /* l k j i */
r3 = glmm_load(mat[3]); /* p o n m */
/*
t[1] = j * p - n * l;
t[2] = j * o - n * k;
t[3] = i * p - m * l;
t[4] = i * o - m * k;
*/
x0 = glmm_fnmadd(glmm_shuff1(r3, 0, 0, 1, 1), glmm_shuff1(r2, 2, 3, 2, 3),
_mm_mul_ps(glmm_shuff1(r2, 0, 0, 1, 1),
glmm_shuff1(r3, 2, 3, 2, 3)));
/*
t[0] = k * p - o * l;
t[0] = k * p - o * l;
t[5] = i * n - m * j;
t[5] = i * n - m * j;
*/
x1 = glmm_fnmadd(glmm_shuff1(r3, 0, 0, 2, 2), glmm_shuff1(r2, 1, 1, 3, 3),
_mm_mul_ps(glmm_shuff1(r2, 0, 0, 2, 2),
glmm_shuff1(r3, 1, 1, 3, 3)));
/*
a * (f * t[0] - g * t[1] + h * t[2])
- b * (e * t[0] - g * t[3] + h * t[4])
+ c * (e * t[1] - f * t[3] + h * t[5])
- d * (e * t[2] - f * t[4] + g * t[5])
*/
x2 = glmm_fnmadd(glmm_shuff1(r1, 1, 1, 2, 2), glmm_shuff1(x0, 3, 2, 2, 0),
_mm_mul_ps(glmm_shuff1(r1, 0, 0, 0, 1),
_mm_shuffle_ps(x1, x0, _MM_SHUFFLE(1, 0, 0, 0))));
x2 = glmm_fmadd(glmm_shuff1(r1, 2, 3, 3, 3),
_mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 2, 3, 1)),
x2);
x2 = _mm_xor_ps(x2, _mm_set_ps(-0.f, 0.f, -0.f, 0.f));
return glmm_hadd(_mm_mul_ps(x2, r0));
}
f_inline
void
glm_mat4_inv_fast_sse2(mat4 mat, mat4 dest) {
__m128 r0, r1, r2, r3,
v0, v1, v2, v3,
t0, t1, t2, t3, t4, t5,
x0, x1, x2, x3, x4, x5, x6, x7, x8, x9;
x8 = _mm_set_ps(-0.f, 0.f, -0.f, 0.f);
x9 = glmm_shuff1(x8, 2, 1, 2, 1);
/* 127 <- 0 */
r0 = glmm_load(mat[0]); /* d c b a */
r1 = glmm_load(mat[1]); /* h g f e */
r2 = glmm_load(mat[2]); /* l k j i */
r3 = glmm_load(mat[3]); /* p o n m */
x0 = _mm_movehl_ps(r3, r2); /* p o l k */
x3 = _mm_movelh_ps(r2, r3); /* n m j i */
x1 = glmm_shuff1(x0, 1, 3, 3 ,3); /* l p p p */
x2 = glmm_shuff1(x0, 0, 2, 2, 2); /* k o o o */
x4 = glmm_shuff1(x3, 1, 3, 3, 3); /* j n n n */
x7 = glmm_shuff1(x3, 0, 2, 2, 2); /* i m m m */
x6 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(0, 0, 0, 0)); /* e e i i */
x5 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(1, 1, 1, 1)); /* f f j j */
x3 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(2, 2, 2, 2)); /* g g k k */
x0 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(3, 3, 3, 3)); /* h h l l */
t0 = _mm_mul_ps(x3, x1);
t1 = _mm_mul_ps(x5, x1);
t2 = _mm_mul_ps(x5, x2);
t3 = _mm_mul_ps(x6, x1);
t4 = _mm_mul_ps(x6, x2);
t5 = _mm_mul_ps(x6, x4);
/* t1[0] = k * p - o * l;
t1[0] = k * p - o * l;
t2[0] = g * p - o * h;
t3[0] = g * l - k * h; */
t0 = glmm_fnmadd(x2, x0, t0);
/* t1[1] = j * p - n * l;
t1[1] = j * p - n * l;
t2[1] = f * p - n * h;
t3[1] = f * l - j * h; */
t1 = glmm_fnmadd(x4, x0, t1);
/* t1[2] = j * o - n * k
t1[2] = j * o - n * k;
t2[2] = f * o - n * g;
t3[2] = f * k - j * g; */
t2 = glmm_fnmadd(x4, x3, t2);
/* t1[3] = i * p - m * l;
t1[3] = i * p - m * l;
t2[3] = e * p - m * h;
t3[3] = e * l - i * h; */
t3 = glmm_fnmadd(x7, x0, t3);
/* t1[4] = i * o - m * k;
t1[4] = i * o - m * k;
t2[4] = e * o - m * g;
t3[4] = e * k - i * g; */
t4 = glmm_fnmadd(x7, x3, t4);
/* t1[5] = i * n - m * j;
t1[5] = i * n - m * j;
t2[5] = e * n - m * f;
t3[5] = e * j - i * f; */
t5 = glmm_fnmadd(x7, x5, t5);
x4 = _mm_movelh_ps(r0, r1); /* f e b a */
x5 = _mm_movehl_ps(r1, r0); /* h g d c */
x0 = glmm_shuff1(x4, 0, 0, 0, 2); /* a a a e */
x1 = glmm_shuff1(x4, 1, 1, 1, 3); /* b b b f */
x2 = glmm_shuff1(x5, 0, 0, 0, 2); /* c c c g */
x3 = glmm_shuff1(x5, 1, 1, 1, 3); /* d d d h */
v2 = _mm_mul_ps(x0, t1);
v1 = _mm_mul_ps(x0, t0);
v3 = _mm_mul_ps(x0, t2);
v0 = _mm_mul_ps(x1, t0);
v2 = glmm_fnmadd(x1, t3, v2);
v3 = glmm_fnmadd(x1, t4, v3);
v0 = glmm_fnmadd(x2, t1, v0);
v1 = glmm_fnmadd(x2, t3, v1);
v3 = glmm_fmadd(x2, t5, v3);
v0 = glmm_fmadd(x3, t2, v0);
v2 = glmm_fmadd(x3, t5, v2);
v1 = glmm_fmadd(x3, t4, v1);
/*
dest[0][0] = f * t1[0] - g * t1[1] + h * t1[2];
dest[0][1] =-(b * t1[0] - c * t1[1] + d * t1[2]);
dest[0][2] = b * t2[0] - c * t2[1] + d * t2[2];
dest[0][3] =-(b * t3[0] - c * t3[1] + d * t3[2]); */
v0 = _mm_xor_ps(v0, x8);
/*
dest[2][0] = e * t1[1] - f * t1[3] + h * t1[5];
dest[2][1] =-(a * t1[1] - b * t1[3] + d * t1[5]);
dest[2][2] = a * t2[1] - b * t2[3] + d * t2[5];
dest[2][3] =-(a * t3[1] - b * t3[3] + d * t3[5]);*/
v2 = _mm_xor_ps(v2, x8);
/*
dest[1][0] =-(e * t1[0] - g * t1[3] + h * t1[4]);
dest[1][1] = a * t1[0] - c * t1[3] + d * t1[4];
dest[1][2] =-(a * t2[0] - c * t2[3] + d * t2[4]);
dest[1][3] = a * t3[0] - c * t3[3] + d * t3[4]; */
v1 = _mm_xor_ps(v1, x9);
/*
dest[3][0] =-(e * t1[2] - f * t1[4] + g * t1[5]);
dest[3][1] = a * t1[2] - b * t1[4] + c * t1[5];
dest[3][2] =-(a * t2[2] - b * t2[4] + c * t2[5]);
dest[3][3] = a * t3[2] - b * t3[4] + c * t3[5]; */
v3 = _mm_xor_ps(v3, x9);
/* determinant */
x0 = _mm_shuffle_ps(v0, v1, _MM_SHUFFLE(0, 0, 0, 0));
x1 = _mm_shuffle_ps(v2, v3, _MM_SHUFFLE(0, 0, 0, 0));
x0 = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 0, 2, 0));
x0 = _mm_rcp_ps(glmm_vhadd(_mm_mul_ps(x0, r0)));
glmm_store(dest[0], _mm_mul_ps(v0, x0));
glmm_store(dest[1], _mm_mul_ps(v1, x0));
glmm_store(dest[2], _mm_mul_ps(v2, x0));
glmm_store(dest[3], _mm_mul_ps(v3, x0));
}
f_inline
void
glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
__m128 r0, r1, r2, r3,
v0, v1, v2, v3,
t0, t1, t2, t3, t4, t5,
x0, x1, x2, x3, x4, x5, x6, x7, x8, x9;
x8 = _mm_set_ps(-0.f, 0.f, -0.f, 0.f);
x9 = glmm_shuff1(x8, 2, 1, 2, 1);
/* 127 <- 0 */
r0 = glmm_load(mat[0]); /* d c b a */
r1 = glmm_load(mat[1]); /* h g f e */
r2 = glmm_load(mat[2]); /* l k j i */
r3 = glmm_load(mat[3]); /* p o n m */
x0 = _mm_movehl_ps(r3, r2); /* p o l k */
x3 = _mm_movelh_ps(r2, r3); /* n m j i */
x1 = glmm_shuff1(x0, 1, 3, 3 ,3); /* l p p p */
x2 = glmm_shuff1(x0, 0, 2, 2, 2); /* k o o o */
x4 = glmm_shuff1(x3, 1, 3, 3, 3); /* j n n n */
x7 = glmm_shuff1(x3, 0, 2, 2, 2); /* i m m m */
x6 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(0, 0, 0, 0)); /* e e i i */
x5 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(1, 1, 1, 1)); /* f f j j */
x3 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(2, 2, 2, 2)); /* g g k k */
x0 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(3, 3, 3, 3)); /* h h l l */
t0 = _mm_mul_ps(x3, x1);
t1 = _mm_mul_ps(x5, x1);
t2 = _mm_mul_ps(x5, x2);
t3 = _mm_mul_ps(x6, x1);
t4 = _mm_mul_ps(x6, x2);
t5 = _mm_mul_ps(x6, x4);
/* t1[0] = k * p - o * l;
t1[0] = k * p - o * l;
t2[0] = g * p - o * h;
t3[0] = g * l - k * h; */
t0 = glmm_fnmadd(x2, x0, t0);
/* t1[1] = j * p - n * l;
t1[1] = j * p - n * l;
t2[1] = f * p - n * h;
t3[1] = f * l - j * h; */
t1 = glmm_fnmadd(x4, x0, t1);
/* t1[2] = j * o - n * k
t1[2] = j * o - n * k;
t2[2] = f * o - n * g;
t3[2] = f * k - j * g; */
t2 = glmm_fnmadd(x4, x3, t2);
/* t1[3] = i * p - m * l;
t1[3] = i * p - m * l;
t2[3] = e * p - m * h;
t3[3] = e * l - i * h; */
t3 = glmm_fnmadd(x7, x0, t3);
/* t1[4] = i * o - m * k;
t1[4] = i * o - m * k;
t2[4] = e * o - m * g;
t3[4] = e * k - i * g; */
t4 = glmm_fnmadd(x7, x3, t4);
/* t1[5] = i * n - m * j;
t1[5] = i * n - m * j;
t2[5] = e * n - m * f;
t3[5] = e * j - i * f; */
t5 = glmm_fnmadd(x7, x5, t5);
x4 = _mm_movelh_ps(r0, r1); /* f e b a */
x5 = _mm_movehl_ps(r1, r0); /* h g d c */
x0 = glmm_shuff1(x4, 0, 0, 0, 2); /* a a a e */
x1 = glmm_shuff1(x4, 1, 1, 1, 3); /* b b b f */
x2 = glmm_shuff1(x5, 0, 0, 0, 2); /* c c c g */
x3 = glmm_shuff1(x5, 1, 1, 1, 3); /* d d d h */
v2 = _mm_mul_ps(x0, t1);
v1 = _mm_mul_ps(x0, t0);
v3 = _mm_mul_ps(x0, t2);
v0 = _mm_mul_ps(x1, t0);
v2 = glmm_fnmadd(x1, t3, v2);
v3 = glmm_fnmadd(x1, t4, v3);
v0 = glmm_fnmadd(x2, t1, v0);
v1 = glmm_fnmadd(x2, t3, v1);
v3 = glmm_fmadd(x2, t5, v3);
v0 = glmm_fmadd(x3, t2, v0);
v2 = glmm_fmadd(x3, t5, v2);
v1 = glmm_fmadd(x3, t4, v1);
/*
dest[0][0] = f * t1[0] - g * t1[1] + h * t1[2];
dest[0][1] =-(b * t1[0] - c * t1[1] + d * t1[2]);
dest[0][2] = b * t2[0] - c * t2[1] + d * t2[2];
dest[0][3] =-(b * t3[0] - c * t3[1] + d * t3[2]); */
v0 = _mm_xor_ps(v0, x8);
/*
dest[2][0] = e * t1[1] - f * t1[3] + h * t1[5];
dest[2][1] =-(a * t1[1] - b * t1[3] + d * t1[5]);
dest[2][2] = a * t2[1] - b * t2[3] + d * t2[5];
dest[2][3] =-(a * t3[1] - b * t3[3] + d * t3[5]);*/
v2 = _mm_xor_ps(v2, x8);
/*
dest[1][0] =-(e * t1[0] - g * t1[3] + h * t1[4]);
dest[1][1] = a * t1[0] - c * t1[3] + d * t1[4];
dest[1][2] =-(a * t2[0] - c * t2[3] + d * t2[4]);
dest[1][3] = a * t3[0] - c * t3[3] + d * t3[4]; */
v1 = _mm_xor_ps(v1, x9);
/*
dest[3][0] =-(e * t1[2] - f * t1[4] + g * t1[5]);
dest[3][1] = a * t1[2] - b * t1[4] + c * t1[5];
dest[3][2] =-(a * t2[2] - b * t2[4] + c * t2[5]);
dest[3][3] = a * t3[2] - b * t3[4] + c * t3[5]; */
v3 = _mm_xor_ps(v3, x9);
/* determinant */
x0 = _mm_shuffle_ps(v0, v1, _MM_SHUFFLE(0, 0, 0, 0));
x1 = _mm_shuffle_ps(v2, v3, _MM_SHUFFLE(0, 0, 0, 0));
x0 = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 0, 2, 0));
x0 = _mm_div_ps(_mm_set1_ps(1.0f), glmm_vhadd(_mm_mul_ps(x0, r0)));
glmm_store(dest[0], _mm_mul_ps(v0, x0));
glmm_store(dest[1], _mm_mul_ps(v1, x0));
glmm_store(dest[2], _mm_mul_ps(v2, x0));
glmm_store(dest[3], _mm_mul_ps(v3, x0));
}
#endif
#endif
#define GLM_MAT4_IDENTITY_INIT {{1.0f, 0.0f, 0.0f, 0.0f}, \
{0.0f, 1.0f, 0.0f, 0.0f}, \
{0.0f, 0.0f, 1.0f, 0.0f}, \
{0.0f, 0.0f, 0.0f, 1.0f}}
#define GLM_MAT4_ZERO_INIT {{0.0f, 0.0f, 0.0f, 0.0f}, \
{0.0f, 0.0f, 0.0f, 0.0f}, \
{0.0f, 0.0f, 0.0f, 0.0f}, \
{0.0f, 0.0f, 0.0f, 0.0f}}
/* for C only */
#define GLM_MAT4_IDENTITY ((mat4)GLM_MAT4_IDENTITY_INIT)
#define GLM_MAT4_ZERO ((mat4)GLM_MAT4_ZERO_INIT)
/*!
* @brief copy all members of [mat] to [dest]
*
* matrix may not be aligned, u stands for unaligned, this may be useful when
* copying a matrix from external source e.g. asset importer...
*
* @param[in] mat source
* @param[out] dest destination
*/
f_inline
void
glm_mat4_ucopy(mat4 mat, mat4 dest) {
dest[0][0] = mat[0][0]; dest[1][0] = mat[1][0];
dest[0][1] = mat[0][1]; dest[1][1] = mat[1][1];
dest[0][2] = mat[0][2]; dest[1][2] = mat[1][2];
dest[0][3] = mat[0][3]; dest[1][3] = mat[1][3];
dest[2][0] = mat[2][0]; dest[3][0] = mat[3][0];
dest[2][1] = mat[2][1]; dest[3][1] = mat[3][1];
dest[2][2] = mat[2][2]; dest[3][2] = mat[3][2];
dest[2][3] = mat[2][3]; dest[3][3] = mat[3][3];
}
/*!
* @brief copy all members of [mat] to [dest]
*
* @param[in] mat source
* @param[out] dest destination
*/
f_inline
void
glm_mat4_copy(mat4 mat, mat4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest[0], glmm_load(mat[0]));
glmm_store(dest[1], glmm_load(mat[1]));
glmm_store(dest[2], glmm_load(mat[2]));
glmm_store(dest[3], glmm_load(mat[3]));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest[0], vld1q_f32(mat[0]));
vst1q_f32(dest[1], vld1q_f32(mat[1]));
vst1q_f32(dest[2], vld1q_f32(mat[2]));
vst1q_f32(dest[3], vld1q_f32(mat[3]));
#else
glm_mat4_ucopy(mat, dest);
#endif
}
/*!
* @brief make given matrix identity. It is identical with below,
* but it is more easy to do that with this func especially for members
* e.g. glm_mat4_identity(aStruct->aMatrix);
*
* @code
* glm_mat4_copy(GLM_MAT4_IDENTITY, mat); // C only
*
* // or
* mat4 mat = GLM_MAT4_IDENTITY_INIT;
* @endcode
*
* @param[in, out] mat destination
*/
f_inline
void
glm_mat4_identity(mat4 mat) {
f_align(16) mat4 t = GLM_MAT4_IDENTITY_INIT;
glm_mat4_copy(t, mat);
}
/*!
* @brief make given matrix array's each element identity matrix
*
* @param[in, out] mat matrix array (must be aligned (16/32)
* if alignment is not disabled)
*
* @param[in] count count of matrices
*/
f_inline
void
glm_mat4_identity_array(mat4 * __restrict mat, uint count) {
f_align(16) mat4 t = GLM_MAT4_IDENTITY_INIT;
uint i;
for (i = 0; i < count; i++) {
glm_mat4_copy(t, mat[i]);
}
}
/*!
* @brief make given matrix zero.
*
* @param[in, out] mat matrix
*/
f_inline
void
glm_mat4_zero(mat4 mat) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_128 x0;
x0 = _mm_setzero_ps();
glmm_store(mat[0], x0);
glmm_store(mat[1], x0);
glmm_store(mat[2], x0);
glmm_store(mat[3], x0);
#elif defined(CGLM_NEON_FP)
glmm_128 x0;
x0 = vdupq_n_f32(0.0f);
vst1q_f32(mat[0], x0);
vst1q_f32(mat[1], x0);
vst1q_f32(mat[2], x0);
vst1q_f32(mat[3], x0);
#else
f_align(16) mat4 t = GLM_MAT4_ZERO_INIT;
glm_mat4_copy(t, mat);
#endif
}
/*!
* @brief copy upper-left of mat4 to mat3
*
* @param[in] mat source
* @param[out] dest destination
*/
f_inline
void
glm_mat4_pick3(mat4 mat, mat3 dest) {
dest[0][0] = mat[0][0];
dest[0][1] = mat[0][1];
dest[0][2] = mat[0][2];
dest[1][0] = mat[1][0];
dest[1][1] = mat[1][1];
dest[1][2] = mat[1][2];
dest[2][0] = mat[2][0];
dest[2][1] = mat[2][1];
dest[2][2] = mat[2][2];
}
/*!
* @brief copy upper-left of mat4 to mat3 (transposed)
*
* the postfix t stands for transpose
*
* @param[in] mat source
* @param[out] dest destination
*/
f_inline
void
glm_mat4_pick3t(mat4 mat, mat3 dest) {
dest[0][0] = mat[0][0];
dest[0][1] = mat[1][0];
dest[0][2] = mat[2][0];
dest[1][0] = mat[0][1];
dest[1][1] = mat[1][1];
dest[1][2] = mat[2][1];
dest[2][0] = mat[0][2];
dest[2][1] = mat[1][2];
dest[2][2] = mat[2][2];
}
/*!
* @brief copy mat3 to mat4's upper-left
*
* @param[in] mat source
* @param[out] dest destination
*/
f_inline
void
glm_mat4_ins3(mat3 mat, mat4 dest) {
dest[0][0] = mat[0][0];
dest[0][1] = mat[0][1];
dest[0][2] = mat[0][2];
dest[1][0] = mat[1][0];
dest[1][1] = mat[1][1];
dest[1][2] = mat[1][2];
dest[2][0] = mat[2][0];
dest[2][1] = mat[2][1];
dest[2][2] = mat[2][2];
}
/*!
* @brief multiply m1 and m2 to dest
*
* m1, m2 and dest matrices can be same matrix, it is possible to write this:
*
* @code
* mat4 m = GLM_MAT4_IDENTITY_INIT;
* glm_mat4_mul(m, m, m);
* @endcode
*
* @param[in] m1 left matrix
* @param[in] m2 right matrix
* @param[out] dest destination matrix
*/
f_inline
void
glm_mat4_mul(mat4 m1, mat4 m2, mat4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat4_mul_sse2(m1, m2, dest);
#elif defined(CGLM_NEON_FP)
glm_mat4_mul_neon(m1, m2, dest);
#else
float a00 = m1[0][0], a01 = m1[0][1], a02 = m1[0][2], a03 = m1[0][3],
a10 = m1[1][0], a11 = m1[1][1], a12 = m1[1][2], a13 = m1[1][3],
a20 = m1[2][0], a21 = m1[2][1], a22 = m1[2][2], a23 = m1[2][3],
a30 = m1[3][0], a31 = m1[3][1], a32 = m1[3][2], a33 = m1[3][3],
b00 = m2[0][0], b01 = m2[0][1], b02 = m2[0][2], b03 = m2[0][3],
b10 = m2[1][0], b11 = m2[1][1], b12 = m2[1][2], b13 = m2[1][3],
b20 = m2[2][0], b21 = m2[2][1], b22 = m2[2][2], b23 = m2[2][3],
b30 = m2[3][0], b31 = m2[3][1], b32 = m2[3][2], b33 = m2[3][3];
dest[0][0] = a00 * b00 + a10 * b01 + a20 * b02 + a30 * b03;
dest[0][1] = a01 * b00 + a11 * b01 + a21 * b02 + a31 * b03;
dest[0][2] = a02 * b00 + a12 * b01 + a22 * b02 + a32 * b03;
dest[0][3] = a03 * b00 + a13 * b01 + a23 * b02 + a33 * b03;
dest[1][0] = a00 * b10 + a10 * b11 + a20 * b12 + a30 * b13;
dest[1][1] = a01 * b10 + a11 * b11 + a21 * b12 + a31 * b13;
dest[1][2] = a02 * b10 + a12 * b11 + a22 * b12 + a32 * b13;
dest[1][3] = a03 * b10 + a13 * b11 + a23 * b12 + a33 * b13;
dest[2][0] = a00 * b20 + a10 * b21 + a20 * b22 + a30 * b23;
dest[2][1] = a01 * b20 + a11 * b21 + a21 * b22 + a31 * b23;
dest[2][2] = a02 * b20 + a12 * b21 + a22 * b22 + a32 * b23;
dest[2][3] = a03 * b20 + a13 * b21 + a23 * b22 + a33 * b23;
dest[3][0] = a00 * b30 + a10 * b31 + a20 * b32 + a30 * b33;
dest[3][1] = a01 * b30 + a11 * b31 + a21 * b32 + a31 * b33;
dest[3][2] = a02 * b30 + a12 * b31 + a22 * b32 + a32 * b33;
dest[3][3] = a03 * b30 + a13 * b31 + a23 * b32 + a33 * b33;
#endif
}
/*!
* @brief mupliply N mat4 matrices and store result in dest
*
* this function lets you multiply multiple (more than two or more...) matrices
* <br><br>multiplication will be done in loop, this may reduce instructions
* size but if <b>len</b> is too small then compiler may unroll whole loop,
* usage:
* @code
* mat m1, m2, m3, m4, res;
*
* glm_mat4_mulN((mat4 *[]){&m1, &m2, &m3, &m4}, 4, res);
* @endcode
*
* @warning matrices parameter is pointer array not mat4 array!
*
* @param[in] matrices mat4 * array
* @param[in] len matrices count
* @param[out] dest result
*/
f_inline
void
glm_mat4_mulN(mat4 * __restrict matrices[], uint len, mat4 dest) {
uint i;
// sys_assert(len > 1);
glm_mat4_mul(*matrices[0], *matrices[1], dest);
for (i = 2; i < len; i++)
glm_mat4_mul(dest, *matrices[i], dest);
}
/*!
* @brief multiply mat4 with vec4 (column vector) and store in dest vector
*
* @param[in] m mat4 (left)
* @param[in] v vec4 (right, column vector)
* @param[out] dest vec4 (result, column vector)
*/
f_inline
void
glm_mat4_mulv(mat4 m, vec4 v, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat4_mulv_sse2(m, v, dest);
#elif defined(CGLM_NEON_FP)
glm_mat4_mulv_neon(m, v, dest);
#else
vec4 res;
res[0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0] * v[2] + m[3][0] * v[3];
res[1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1] * v[2] + m[3][1] * v[3];
res[2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2] + m[3][2] * v[3];
res[3] = m[0][3] * v[0] + m[1][3] * v[1] + m[2][3] * v[2] + m[3][3] * v[3];
glm_vec4_copy(res, dest);
#endif
}
/*!
* @brief trace of matrix
*
* sum of the elements on the main diagonal from upper left to the lower right
*
* @param[in] m matrix
*/
f_inline
float
glm_mat4_trace(mat4 m) {
return m[0][0] + m[1][1] + m[2][2] + m[3][3];
}
/*!
* @brief trace of matrix (rotation part)
*
* sum of the elements on the main diagonal from upper left to the lower right
*
* @param[in] m matrix
*/
f_inline
float
glm_mat4_trace3(mat4 m) {
return m[0][0] + m[1][1] + m[2][2];
}
/*!
* @brief convert mat4's rotation part to quaternion
*
* @param[in] m affine matrix
* @param[out] dest destination quaternion
*/
f_inline
void
glm_mat4_quat(mat4 m, vec4 dest) {
float trace, r, rinv;
/* it seems using like m12 instead of m[1][2] causes extra instructions */
trace = m[0][0] + m[1][1] + m[2][2];
if (trace >= 0.0f) {
r = sqrtf(1.0f + trace);
rinv = 0.5f / r;
dest[0] = rinv * (m[1][2] - m[2][1]);
dest[1] = rinv * (m[2][0] - m[0][2]);
dest[2] = rinv * (m[0][1] - m[1][0]);
dest[3] = r * 0.5f;
} else if (m[0][0] >= m[1][1] && m[0][0] >= m[2][2]) {
r = sqrtf(1.0f - m[1][1] - m[2][2] + m[0][0]);
rinv = 0.5f / r;
dest[0] = r * 0.5f;
dest[1] = rinv * (m[0][1] + m[1][0]);
dest[2] = rinv * (m[0][2] + m[2][0]);
dest[3] = rinv * (m[1][2] - m[2][1]);
} else if (m[1][1] >= m[2][2]) {
r = sqrtf(1.0f - m[0][0] - m[2][2] + m[1][1]);
rinv = 0.5f / r;
dest[0] = rinv * (m[0][1] + m[1][0]);
dest[1] = r * 0.5f;
dest[2] = rinv * (m[1][2] + m[2][1]);
dest[3] = rinv * (m[2][0] - m[0][2]);
} else {
r = sqrtf(1.0f - m[0][0] - m[1][1] + m[2][2]);
rinv = 0.5f / r;
dest[0] = rinv * (m[0][2] + m[2][0]);
dest[1] = rinv * (m[1][2] + m[2][1]);
dest[2] = r * 0.5f;
dest[3] = rinv * (m[0][1] - m[1][0]);
}
}
/*!
* @brief multiply vector with mat4
*
* actually the result is vec4, after multiplication the last component
* is trimmed. if you need it don't use this func.
*
* @param[in] m mat4(affine transform)
* @param[in] v vec3
* @param[in] last 4th item to make it vec4
* @param[out] dest result vector (vec3)
*/
f_inline
void
glm_mat4_mulv3(mat4 m, vec3 v, float last, vec3 dest) {
vec4 res;
glm_vec4(v, last, res);
glm_mat4_mulv(m, res, res);
glm_vec3(res, dest);
}
/*!
* @brief transpose mat4 and store in dest
*
* source matrix will not be transposed unless dest is m
*
* @param[in] m matrix
* @param[out] dest result
*/
f_inline
void
glm_mat4_transpose_to(mat4 m, mat4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat4_transp_sse2(m, dest);
#elif defined(CGLM_NEON_FP)
glm_mat4_transp_neon(m, dest);
#else
dest[0][0] = m[0][0]; dest[1][0] = m[0][1];
dest[0][1] = m[1][0]; dest[1][1] = m[1][1];
dest[0][2] = m[2][0]; dest[1][2] = m[2][1];
dest[0][3] = m[3][0]; dest[1][3] = m[3][1];
dest[2][0] = m[0][2]; dest[3][0] = m[0][3];
dest[2][1] = m[1][2]; dest[3][1] = m[1][3];
dest[2][2] = m[2][2]; dest[3][2] = m[2][3];
dest[2][3] = m[3][2]; dest[3][3] = m[3][3];
#endif
}
/*!
* @brief tranpose mat4 and store result in same matrix
*
* @param[in, out] m source and dest
*/
f_inline
void
glm_mat4_transpose(mat4 m) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat4_transp_sse2(m, m);
#elif defined(CGLM_NEON_FP)
glm_mat4_transp_neon(m, m);
#else
mat4 d;
glm_mat4_transpose_to(m, d);
glm_mat4_ucopy(d, m);
#endif
}
/*!
* @brief scale (multiply with scalar) matrix without simd optimization
*
* multiply matrix with scalar
*
* @param[in, out] m matrix
* @param[in] s scalar
*/
f_inline
void
glm_mat4_scale_p(mat4 m, float s) {
m[0][0] *= s; m[0][1] *= s; m[0][2] *= s; m[0][3] *= s;
m[1][0] *= s; m[1][1] *= s; m[1][2] *= s; m[1][3] *= s;
m[2][0] *= s; m[2][1] *= s; m[2][2] *= s; m[2][3] *= s;
m[3][0] *= s; m[3][1] *= s; m[3][2] *= s; m[3][3] *= s;
}
/*!
* @brief scale (multiply with scalar) matrix
*
* multiply matrix with scalar
*
* @param[in, out] m matrix
* @param[in] s scalar
*/
f_inline
void
glm_mat4_scale(mat4 m, float s) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat4_scale_sse2(m, s);
#elif defined(CGLM_NEON_FP)
glm_mat4_scale_neon(m, s);
#else
glm_mat4_scale_p(m, s);
#endif
}
/*!
* @brief mat4 determinant
*
* @param[in] mat matrix
*
* @return determinant
*/
f_inline
float
glm_mat4_det(mat4 mat) {
#if defined( __SSE__ ) || defined( __SSE2__ )
return glm_mat4_det_sse2(mat);
#elif defined(CGLM_NEON_FP)
return glm_mat4_det_neon(mat);
#else
/* [square] det(A) = det(At) */
float t[6];
float a = mat[0][0], b = mat[0][1], c = mat[0][2], d = mat[0][3],
e = mat[1][0], f = mat[1][1], g = mat[1][2], h = mat[1][3],
i = mat[2][0], j = mat[2][1], k = mat[2][2], l = mat[2][3],
m = mat[3][0], n = mat[3][1], o = mat[3][2], p = mat[3][3];
t[0] = k * p - o * l;
t[1] = j * p - n * l;
t[2] = j * o - n * k;
t[3] = i * p - m * l;
t[4] = i * o - m * k;
t[5] = i * n - m * j;
return a * (f * t[0] - g * t[1] + h * t[2])
- b * (e * t[0] - g * t[3] + h * t[4])
+ c * (e * t[1] - f * t[3] + h * t[5])
- d * (e * t[2] - f * t[4] + g * t[5]);
#endif
}
/*!
* @brief inverse mat4 and store in dest
*
* @param[in] mat matrix
* @param[out] dest inverse matrix
*/
f_inline
void
glm_mat4_inv(mat4 mat, mat4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat4_inv_sse2(mat, dest);
#elif defined(CGLM_NEON_FP)
glm_mat4_inv_neon(mat, dest);
#else
float t[6];
float det;
float a = mat[0][0], b = mat[0][1], c = mat[0][2], d = mat[0][3],
e = mat[1][0], f = mat[1][1], g = mat[1][2], h = mat[1][3],
i = mat[2][0], j = mat[2][1], k = mat[2][2], l = mat[2][3],
m = mat[3][0], n = mat[3][1], o = mat[3][2], p = mat[3][3];
t[0] = k * p - o * l; t[1] = j * p - n * l; t[2] = j * o - n * k;
t[3] = i * p - m * l; t[4] = i * o - m * k; t[5] = i * n - m * j;
dest[0][0] = f * t[0] - g * t[1] + h * t[2];
dest[1][0] =-(e * t[0] - g * t[3] + h * t[4]);
dest[2][0] = e * t[1] - f * t[3] + h * t[5];
dest[3][0] =-(e * t[2] - f * t[4] + g * t[5]);
dest[0][1] =-(b * t[0] - c * t[1] + d * t[2]);
dest[1][1] = a * t[0] - c * t[3] + d * t[4];
dest[2][1] =-(a * t[1] - b * t[3] + d * t[5]);
dest[3][1] = a * t[2] - b * t[4] + c * t[5];
t[0] = g * p - o * h; t[1] = f * p - n * h; t[2] = f * o - n * g;
t[3] = e * p - m * h; t[4] = e * o - m * g; t[5] = e * n - m * f;
dest[0][2] = b * t[0] - c * t[1] + d * t[2];
dest[1][2] =-(a * t[0] - c * t[3] + d * t[4]);
dest[2][2] = a * t[1] - b * t[3] + d * t[5];
dest[3][2] =-(a * t[2] - b * t[4] + c * t[5]);
t[0] = g * l - k * h; t[1] = f * l - j * h; t[2] = f * k - j * g;
t[3] = e * l - i * h; t[4] = e * k - i * g; t[5] = e * j - i * f;
dest[0][3] =-(b * t[0] - c * t[1] + d * t[2]);
dest[1][3] = a * t[0] - c * t[3] + d * t[4];
dest[2][3] =-(a * t[1] - b * t[3] + d * t[5]);
dest[3][3] = a * t[2] - b * t[4] + c * t[5];
det = 1.0f / (a * dest[0][0] + b * dest[1][0]
+ c * dest[2][0] + d * dest[3][0]);
glm_mat4_scale_p(dest, det);
#endif
}
/*!
* @brief inverse mat4 and store in dest
*
* this func uses reciprocal approximation without extra corrections
* e.g Newton-Raphson. this should work faster than normal,
* to get more precise use glm_mat4_inv version.
*
* NOTE: You will lose precision, glm_mat4_inv is more accurate
*
* @param[in] mat matrix
* @param[out] dest inverse matrix
*/
f_inline
void
glm_mat4_inv_fast(mat4 mat, mat4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat4_inv_fast_sse2(mat, dest);
#else
glm_mat4_inv(mat, dest);
#endif
}
/*!
* @brief swap two matrix columns
*
* @param[in,out] mat matrix
* @param[in] col1 col1
* @param[in] col2 col2
*/
f_inline
void
glm_mat4_swap_col(mat4 mat, int col1, int col2) {
f_align(16) vec4 tmp;
glm_vec4_copy(mat[col1], tmp);
glm_vec4_copy(mat[col2], mat[col1]);
glm_vec4_copy(tmp, mat[col2]);
}
/*!
* @brief swap two matrix rows
*
* @param[in,out] mat matrix
* @param[in] row1 row1
* @param[in] row2 row2
*/
f_inline
void
glm_mat4_swap_row(mat4 mat, int row1, int row2) {
f_align(16) vec4 tmp;
tmp[0] = mat[0][row1];
tmp[1] = mat[1][row1];
tmp[2] = mat[2][row1];
tmp[3] = mat[3][row1];
mat[0][row1] = mat[0][row2];
mat[1][row1] = mat[1][row2];
mat[2][row1] = mat[2][row2];
mat[3][row1] = mat[3][row2];
mat[0][row2] = tmp[0];
mat[1][row2] = tmp[1];
mat[2][row2] = tmp[2];
mat[3][row2] = tmp[3];
}
/*!
* @brief helper for R (row vector) * M (matrix) * C (column vector)
*
* rmc stands for Row * Matrix * Column
*
* the result is scalar because R * M = Matrix1x4 (row vector),
* then Matrix1x4 * Vec4 (column vector) = Matrix1x1 (Scalar)
*
* @param[in] r row vector or matrix1x4
* @param[in] m matrix4x4
* @param[in] c column vector or matrix4x1
*
* @return scalar value e.g. B(s)
*/
f_inline
float
glm_mat4_rmc(vec4 r, mat4 m, vec4 c) {
vec4 tmp;
glm_mat4_mulv(m, c, tmp);
return glm_vec4_dot(r, tmp);
}
#ifdef CGLM_SIMD
#if defined( __SSE__ ) || defined( __SSE2__ )
f_inline
void
glm_mat3_mul_sse2(mat3 m1, mat3 m2, mat3 dest) {
__m128 l0, l1, l2, r0, r1, r2, x0, x1, x2, x3, x4, x5, x6, x7, x8, x9;
l0 = _mm_loadu_ps(m1[0]);
l1 = _mm_loadu_ps(&m1[1][1]);
r0 = _mm_loadu_ps(m2[0]);
r1 = _mm_loadu_ps(&m2[1][1]);
x8 = glmm_shuff1(l0, 0, 2, 1, 0); /* a00 a02 a01 a00 */
x1 = glmm_shuff1(r0, 3, 0, 0, 0); /* b10 b00 b00 b00 */
x2 = _mm_shuffle_ps(l0, l1, _MM_SHUFFLE(1, 0, 3, 3)); /* a12 a11 a10 a10 */
x3 = _mm_shuffle_ps(r0, r1, _MM_SHUFFLE(2, 0, 3, 1)); /* b20 b11 b10 b01 */
x0 = _mm_mul_ps(x8, x1);
x6 = glmm_shuff1(l0, 1, 0, 2, 1); /* a01 a00 a02 a01 */
x7 = glmm_shuff1(x3, 3, 3, 1, 1); /* b20 b20 b10 b10 */
l2 = _mm_load_ss(&m1[2][2]);
r2 = _mm_load_ss(&m2[2][2]);
x1 = _mm_mul_ps(x6, x7);
l2 = glmm_shuff1(l2, 0, 0, 1, 0); /* a22 a22 0.f a22 */
r2 = glmm_shuff1(r2, 0, 0, 1, 0); /* b22 b22 0.f b22 */
x4 = glmm_shuff1(x2, 0, 3, 2, 0); /* a10 a12 a11 a10 */
x5 = glmm_shuff1(x2, 2, 0, 3, 2); /* a11 a10 a12 a11 */
x6 = glmm_shuff1(x3, 2, 0, 0, 0); /* b11 b01 b01 b01 */
x2 = glmm_shuff1(r1, 3, 3, 0, 0); /* b21 b21 b11 b11 */
x8 = _mm_unpackhi_ps(x8, x4); /* a10 a00 a12 a02 */
x9 = _mm_unpackhi_ps(x7, x2); /* b21 b20 b21 b20 */
x0 = glmm_fmadd(x4, x6, x0);
x1 = glmm_fmadd(x5, x2, x1);
x2 = _mm_movehl_ps(l2, l1); /* a22 a22 a21 a20 */
x3 = glmm_shuff1(x2, 0, 2, 1, 0); /* a20 a22 a21 a20 */
x2 = glmm_shuff1(x2, 1, 0, 2, 1); /* a21 a20 a22 a21 */
x4 = _mm_shuffle_ps(r0, r1, _MM_SHUFFLE(1, 1, 2, 2)); /* b12 b12 b02 b02 */
x5 = glmm_shuff1(x4, 3, 0, 0, 0); /* b12 b02 b02 b02 */
x4 = _mm_movehl_ps(r2, x4); /* b22 b22 b12 b12 */
x0 = glmm_fmadd(x3, x5, x0);
x1 = glmm_fmadd(x2, x4, x1);
/*
Dot Product : dest[2][2] = a02 * b20 +
a12 * b21 +
a22 * b22 +
0 * 00 */
x2 = _mm_movelh_ps(x8, l2); /* 0.f a22 a12 a02 */
x3 = _mm_movelh_ps(x9, r2); /* 0.f b22 b21 b20 */
x2 = glmm_vdots(x2, x3);
_mm_storeu_ps(&dest[0][0], x0);
_mm_storeu_ps(&dest[1][1], x1);
_mm_store_ss (&dest[2][2], x2);
}
#endif
#endif
#define GLM_MAT3_IDENTITY_INIT {{1.0f, 0.0f, 0.0f}, \
{0.0f, 1.0f, 0.0f}, \
{0.0f, 0.0f, 1.0f}}
#define GLM_MAT3_ZERO_INIT {{0.0f, 0.0f, 0.0f}, \
{0.0f, 0.0f, 0.0f}, \
{0.0f, 0.0f, 0.0f}}
/* for C only */
#define GLM_MAT3_IDENTITY ((mat3)GLM_MAT3_IDENTITY_INIT)
#define GLM_MAT3_ZERO ((mat3)GLM_MAT3_ZERO_INIT)
/*!
* @brief copy all members of [mat] to [dest]
*
* @param[in] mat source
* @param[out] dest destination
*/
f_inline
void
glm_mat3_copy(mat3 mat, mat3 dest) {
dest[0][0] = mat[0][0];
dest[0][1] = mat[0][1];
dest[0][2] = mat[0][2];
dest[1][0] = mat[1][0];
dest[1][1] = mat[1][1];
dest[1][2] = mat[1][2];
dest[2][0] = mat[2][0];
dest[2][1] = mat[2][1];
dest[2][2] = mat[2][2];
}
/*!
* @brief make given matrix identity. It is identical with below,
* but it is more easy to do that with this func especially for members
* e.g. glm_mat3_identity(aStruct->aMatrix);
*
* @code
* glm_mat3_copy(GLM_MAT3_IDENTITY, mat); // C only
*
* // or
* mat3 mat = GLM_MAT3_IDENTITY_INIT;
* @endcode
*
* @param[in, out] mat destination
*/
f_inline
void
glm_mat3_identity(mat3 mat) {
f_align(16) mat3 t = GLM_MAT3_IDENTITY_INIT;
glm_mat3_copy(t, mat);
}
/*!
* @brief make given matrix array's each element identity matrix
*
* @param[in, out] mat matrix array (must be aligned (16/32)
* if alignment is not disabled)
*
* @param[in] count count of matrices
*/
f_inline
void
glm_mat3_identity_array(mat3 * __restrict mat, uint count) {
f_align(16) mat3 t = GLM_MAT3_IDENTITY_INIT;
uint i;
for (i = 0; i < count; i++) {
glm_mat3_copy(t, mat[i]);
}
}
/*!
* @brief make given matrix zero.
*
* @param[in, out] mat matrix
*/
f_inline
void
glm_mat3_zero(mat3 mat) {
f_align(16) mat3 t = GLM_MAT3_ZERO_INIT;
glm_mat3_copy(t, mat);
}
/*!
* @brief multiply m1 and m2 to dest
*
* m1, m2 and dest matrices can be same matrix, it is possible to write this:
*
* @code
* mat3 m = GLM_MAT3_IDENTITY_INIT;
* glm_mat3_mul(m, m, m);
* @endcode
*
* @param[in] m1 left matrix
* @param[in] m2 right matrix
* @param[out] dest destination matrix
*/
f_inline
void
glm_mat3_mul(mat3 m1, mat3 m2, mat3 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat3_mul_sse2(m1, m2, dest);
#else
float a00 = m1[0][0], a01 = m1[0][1], a02 = m1[0][2],
a10 = m1[1][0], a11 = m1[1][1], a12 = m1[1][2],
a20 = m1[2][0], a21 = m1[2][1], a22 = m1[2][2],
b00 = m2[0][0], b01 = m2[0][1], b02 = m2[0][2],
b10 = m2[1][0], b11 = m2[1][1], b12 = m2[1][2],
b20 = m2[2][0], b21 = m2[2][1], b22 = m2[2][2];
dest[0][0] = a00 * b00 + a10 * b01 + a20 * b02;
dest[0][1] = a01 * b00 + a11 * b01 + a21 * b02;
dest[0][2] = a02 * b00 + a12 * b01 + a22 * b02;
dest[1][0] = a00 * b10 + a10 * b11 + a20 * b12;
dest[1][1] = a01 * b10 + a11 * b11 + a21 * b12;
dest[1][2] = a02 * b10 + a12 * b11 + a22 * b12;
dest[2][0] = a00 * b20 + a10 * b21 + a20 * b22;
dest[2][1] = a01 * b20 + a11 * b21 + a21 * b22;
dest[2][2] = a02 * b20 + a12 * b21 + a22 * b22;
#endif
}
/*!
* @brief transpose mat3 and store in dest
*
* source matrix will not be transposed unless dest is m
*
* @param[in] m matrix
* @param[out] dest result
*/
f_inline
void
glm_mat3_transpose_to(mat3 m, mat3 dest) {
dest[0][0] = m[0][0];
dest[0][1] = m[1][0];
dest[0][2] = m[2][0];
dest[1][0] = m[0][1];
dest[1][1] = m[1][1];
dest[1][2] = m[2][1];
dest[2][0] = m[0][2];
dest[2][1] = m[1][2];
dest[2][2] = m[2][2];
}
/*!
* @brief tranpose mat3 and store result in same matrix
*
* @param[in, out] m source and dest
*/
f_inline
void
glm_mat3_transpose(mat3 m) {
f_align(16) mat3 tmp;
tmp[0][1] = m[1][0];
tmp[0][2] = m[2][0];
tmp[1][0] = m[0][1];
tmp[1][2] = m[2][1];
tmp[2][0] = m[0][2];
tmp[2][1] = m[1][2];
m[0][1] = tmp[0][1];
m[0][2] = tmp[0][2];
m[1][0] = tmp[1][0];
m[1][2] = tmp[1][2];
m[2][0] = tmp[2][0];
m[2][1] = tmp[2][1];
}
/*!
* @brief multiply mat3 with vec3 (column vector) and store in dest vector
*
* @param[in] m mat3 (left)
* @param[in] v vec3 (right, column vector)
* @param[out] dest vec3 (result, column vector)
*/
f_inline
void
glm_mat3_mulv(mat3 m, vec3 v, vec3 dest) {
vec3 res;
res[0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0] * v[2];
res[1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1] * v[2];
res[2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2];
glm_vec3_copy(res, dest);
}
/*!
* @brief trace of matrix
*
* sum of the elements on the main diagonal from upper left to the lower right
*
* @param[in] m matrix
*/
f_inline
float
glm_mat3_trace(mat3 m) {
return m[0][0] + m[1][1] + m[2][2];
}
/*!
* @brief convert mat3 to quaternion
*
* @param[in] m rotation matrix
* @param[out] dest destination quaternion
*/
f_inline
void
glm_mat3_quat(mat3 m, vec4 dest) {
float trace, r, rinv;
/* it seems using like m12 instead of m[1][2] causes extra instructions */
trace = m[0][0] + m[1][1] + m[2][2];
if (trace >= 0.0f) {
r = sqrtf(1.0f + trace);
rinv = 0.5f / r;
dest[0] = rinv * (m[1][2] - m[2][1]);
dest[1] = rinv * (m[2][0] - m[0][2]);
dest[2] = rinv * (m[0][1] - m[1][0]);
dest[3] = r * 0.5f;
} else if (m[0][0] >= m[1][1] && m[0][0] >= m[2][2]) {
r = sqrtf(1.0f - m[1][1] - m[2][2] + m[0][0]);
rinv = 0.5f / r;
dest[0] = r * 0.5f;
dest[1] = rinv * (m[0][1] + m[1][0]);
dest[2] = rinv * (m[0][2] + m[2][0]);
dest[3] = rinv * (m[1][2] - m[2][1]);
} else if (m[1][1] >= m[2][2]) {
r = sqrtf(1.0f - m[0][0] - m[2][2] + m[1][1]);
rinv = 0.5f / r;
dest[0] = rinv * (m[0][1] + m[1][0]);
dest[1] = r * 0.5f;
dest[2] = rinv * (m[1][2] + m[2][1]);
dest[3] = rinv * (m[2][0] - m[0][2]);
} else {
r = sqrtf(1.0f - m[0][0] - m[1][1] + m[2][2]);
rinv = 0.5f / r;
dest[0] = rinv * (m[0][2] + m[2][0]);
dest[1] = rinv * (m[1][2] + m[2][1]);
dest[2] = r * 0.5f;
dest[3] = rinv * (m[0][1] - m[1][0]);
}
}
/*!
* @brief scale (multiply with scalar) matrix
*
* multiply matrix with scalar
*
* @param[in, out] m matrix
* @param[in] s scalar
*/
f_inline
void
glm_mat3_scale(mat3 m, float s) {
m[0][0] *= s; m[0][1] *= s; m[0][2] *= s;
m[1][0] *= s; m[1][1] *= s; m[1][2] *= s;
m[2][0] *= s; m[2][1] *= s; m[2][2] *= s;
}
/*!
* @brief mat3 determinant
*
* @param[in] mat matrix
*
* @return determinant
*/
f_inline
float
glm_mat3_det(mat3 mat) {
float a = mat[0][0], b = mat[0][1], c = mat[0][2],
d = mat[1][0], e = mat[1][1], f = mat[1][2],
g = mat[2][0], h = mat[2][1], i = mat[2][2];
return a * (e * i - h * f) - d * (b * i - c * h) + g * (b * f - c * e);
}
/*!
* @brief inverse mat3 and store in dest
*
* @param[in] mat matrix
* @param[out] dest inverse matrix
*/
f_inline
void
glm_mat3_inv(mat3 mat, mat3 dest) {
float det;
float a = mat[0][0], b = mat[0][1], c = mat[0][2],
d = mat[1][0], e = mat[1][1], f = mat[1][2],
g = mat[2][0], h = mat[2][1], i = mat[2][2];
dest[0][0] = e * i - f * h;
dest[0][1] = -(b * i - h * c);
dest[0][2] = b * f - e * c;
dest[1][0] = -(d * i - g * f);
dest[1][1] = a * i - c * g;
dest[1][2] = -(a * f - d * c);
dest[2][0] = d * h - g * e;
dest[2][1] = -(a * h - g * b);
dest[2][2] = a * e - b * d;
det = 1.0f / (a * dest[0][0] + b * dest[1][0] + c * dest[2][0]);
glm_mat3_scale(dest, det);
}
/*!
* @brief swap two matrix columns
*
* @param[in,out] mat matrix
* @param[in] col1 col1
* @param[in] col2 col2
*/
f_inline
void
glm_mat3_swap_col(mat3 mat, int col1, int col2) {
vec3 tmp;
glm_vec3_copy(mat[col1], tmp);
glm_vec3_copy(mat[col2], mat[col1]);
glm_vec3_copy(tmp, mat[col2]);
}
/*!
* @brief swap two matrix rows
*
* @param[in,out] mat matrix
* @param[in] row1 row1
* @param[in] row2 row2
*/
f_inline
void
glm_mat3_swap_row(mat3 mat, int row1, int row2) {
vec3 tmp;
tmp[0] = mat[0][row1];
tmp[1] = mat[1][row1];
tmp[2] = mat[2][row1];
mat[0][row1] = mat[0][row2];
mat[1][row1] = mat[1][row2];
mat[2][row1] = mat[2][row2];
mat[0][row2] = tmp[0];
mat[1][row2] = tmp[1];
mat[2][row2] = tmp[2];
}
/*!
* @brief helper for R (row vector) * M (matrix) * C (column vector)
*
* rmc stands for Row * Matrix * Column
*
* the result is scalar because R * M = Matrix1x3 (row vector),
* then Matrix1x3 * Vec3 (column vector) = Matrix1x1 (Scalar)
*
* @param[in] r row vector or matrix1x3
* @param[in] m matrix3x3
* @param[in] c column vector or matrix3x1
*
* @return scalar value e.g. Matrix1x1
*/
f_inline
float
glm_mat3_rmc(vec3 r, mat3 m, vec3 c) {
vec3 tmp;
glm_mat3_mulv(m, c, tmp);
return glm_vec3_dot(r, tmp);
}
#ifdef CGLM_SIMD
#if defined( __SSE__ ) || defined( __SSE2__ )
f_inline
void
glm_mat2_mul_sse2(mat2 m1, mat2 m2, mat2 dest) {
__m128 x0, x1, x2, x3, x4;
x1 = glmm_load(m1[0]); /* d c b a */
x2 = glmm_load(m2[0]); /* h g f e */
x3 = glmm_shuff1(x2, 2, 2, 0, 0);
x4 = glmm_shuff1(x2, 3, 3, 1, 1);
x0 = _mm_movelh_ps(x1, x1);
x2 = _mm_movehl_ps(x1, x1);
/*
dest[0][0] = a * e + c * f;
dest[0][1] = b * e + d * f;
dest[1][0] = a * g + c * h;
dest[1][1] = b * g + d * h;
*/
x0 = glmm_fmadd(x0, x3, _mm_mul_ps(x2, x4));
glmm_store(dest[0], x0);
}
f_inline
void
glm_mat2_transp_sse2(mat2 m, mat2 dest) {
/* d c b a */
/* d b c a */
glmm_store(dest[0], glmm_shuff1(glmm_load(m[0]), 3, 1, 2, 0));
}
#endif
#endif
#define GLM_MAT2_IDENTITY_INIT {{1.0f, 0.0f}, {0.0f, 1.0f}}
#define GLM_MAT2_ZERO_INIT {{0.0f, 0.0f}, {0.0f, 0.0f}}
/* for C only */
#define GLM_MAT2_IDENTITY ((mat2)GLM_MAT2_IDENTITY_INIT)
#define GLM_MAT2_ZERO ((mat2)GLM_MAT2_ZERO_INIT)
/*!
* @brief copy all members of [mat] to [dest]
*
* @param[in] mat source
* @param[out] dest destination
*/
f_inline
void
glm_mat2_copy(mat2 mat, mat2 dest) {
glm_vec4_ucopy(mat[0], dest[0]);
}
/*!
* @brief make given matrix identity. It is identical with below,
* but it is more easy to do that with this func especially for members
* e.g. glm_mat2_identity(aStruct->aMatrix);
*
* @code
* glm_mat2_copy(GLM_MAT2_IDENTITY, mat); // C only
*
* // or
* mat2 mat = GLM_MAT2_IDENTITY_INIT;
* @endcode
*
* @param[in, out] mat destination
*/
f_inline
void
glm_mat2_identity(mat2 mat) {
f_align(16) mat2 t = GLM_MAT2_IDENTITY_INIT;
glm_mat2_copy(t, mat);
}
/*!
* @brief make given matrix array's each element identity matrix
*
* @param[in, out] mat matrix array (must be aligned (16)
* if alignment is not disabled)
*
* @param[in] count count of matrices
*/
f_inline
void
glm_mat2_identity_array(mat2 * __restrict mat, uint count) {
f_align(16) mat2 t = GLM_MAT2_IDENTITY_INIT;
uint i;
for (i = 0; i < count; i++) {
glm_mat2_copy(t, mat[i]);
}
}
/*!
* @brief make given matrix zero.
*
* @param[in, out] mat matrix
*/
f_inline
void
glm_mat2_zero(mat2 mat) {
f_align(16) mat2 t = GLM_MAT2_ZERO_INIT;
glm_mat2_copy(t, mat);
}
/*!
* @brief multiply m1 and m2 to dest
*
* m1, m2 and dest matrices can be same matrix, it is possible to write this:
*
* @code
* mat2 m = GLM_MAT2_IDENTITY_INIT;
* glm_mat2_mul(m, m, m);
* @endcode
*
* @param[in] m1 left matrix
* @param[in] m2 right matrix
* @param[out] dest destination matrix
*/
f_inline
void
glm_mat2_mul(mat2 m1, mat2 m2, mat2 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat2_mul_sse2(m1, m2, dest);
#elif defined(CGLM_NEON_FP)
glm_mat2_mul_neon(m1, m2, dest);
#else
float a00 = m1[0][0], a01 = m1[0][1],
a10 = m1[1][0], a11 = m1[1][1],
b00 = m2[0][0], b01 = m2[0][1],
b10 = m2[1][0], b11 = m2[1][1];
dest[0][0] = a00 * b00 + a10 * b01;
dest[0][1] = a01 * b00 + a11 * b01;
dest[1][0] = a00 * b10 + a10 * b11;
dest[1][1] = a01 * b10 + a11 * b11;
#endif
}
/*!
* @brief transpose mat2 and store in dest
*
* source matrix will not be transposed unless dest is m
*
* @param[in] m matrix
* @param[out] dest result
*/
f_inline
void
glm_mat2_transpose_to(mat2 m, mat2 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat2_transp_sse2(m, dest);
#else
dest[0][0] = m[0][0];
dest[0][1] = m[1][0];
dest[1][0] = m[0][1];
dest[1][1] = m[1][1];
#endif
}
/*!
* @brief tranpose mat2 and store result in same matrix
*
* @param[in, out] m source and dest
*/
f_inline
void
glm_mat2_transpose(mat2 m) {
float tmp;
tmp = m[0][1];
m[0][1] = m[1][0];
m[1][0] = tmp;
}
/*!
* @brief multiply mat2 with vec2 (column vector) and store in dest vector
*
* @param[in] m mat2 (left)
* @param[in] v vec2 (right, column vector)
* @param[out] dest vec2 (result, column vector)
*/
f_inline
void
glm_mat2_mulv(mat2 m, vec2 v, vec2 dest) {
dest[0] = m[0][0] * v[0] + m[1][0] * v[1];
dest[1] = m[0][1] * v[0] + m[1][1] * v[1];
}
/*!
* @brief trace of matrix
*
* sum of the elements on the main diagonal from upper left to the lower right
*
* @param[in] m matrix
*/
f_inline
float
glm_mat2_trace(mat2 m) {
return m[0][0] + m[1][1];
}
/*!
* @brief scale (multiply with scalar) matrix
*
* multiply matrix with scalar
*
* @param[in, out] m matrix
* @param[in] s scalar
*/
f_inline
void
glm_mat2_scale(mat2 m, float s) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(m[0], _mm_mul_ps(_mm_loadu_ps(m[0]), _mm_set1_ps(s)));
#elif defined(CGLM_NEON_FP)
vst1q_f32(m[0], vmulq_f32(vld1q_f32(m[0]), vdupq_n_f32(s)));
#else
m[0][0] = m[0][0] * s;
m[0][1] = m[0][1] * s;
m[1][0] = m[1][0] * s;
m[1][1] = m[1][1] * s;
#endif
}
/*!
* @brief mat2 determinant
*
* @param[in] mat matrix
*
* @return determinant
*/
f_inline
float
glm_mat2_det(mat2 mat) {
return mat[0][0] * mat[1][1] - mat[1][0] * mat[0][1];
}
/*!
* @brief inverse mat2 and store in dest
*
* @param[in] mat matrix
* @param[out] dest inverse matrix
*/
f_inline
void
glm_mat2_inv(mat2 mat, mat2 dest) {
float det;
float a = mat[0][0], b = mat[0][1],
c = mat[1][0], d = mat[1][1];
det = 1.0f / (a * d - b * c);
dest[0][0] = d * det;
dest[0][1] = -b * det;
dest[1][0] = -c * det;
dest[1][1] = a * det;
}
/*!
* @brief swap two matrix columns
*
* @param[in,out] mat matrix
* @param[in] col1 col1
* @param[in] col2 col2
*/
f_inline
void
glm_mat2_swap_col(mat2 mat, int col1, int col2) {
float a, b;
a = mat[col1][0];
b = mat[col1][1];
mat[col1][0] = mat[col2][0];
mat[col1][1] = mat[col2][1];
mat[col2][0] = a;
mat[col2][1] = b;
}
/*!
* @brief swap two matrix rows
*
* @param[in,out] mat matrix
* @param[in] row1 row1
* @param[in] row2 row2
*/
f_inline
void
glm_mat2_swap_row(mat2 mat, int row1, int row2) {
float a, b;
a = mat[0][row1];
b = mat[1][row1];
mat[0][row1] = mat[0][row2];
mat[1][row1] = mat[1][row2];
mat[0][row2] = a;
mat[1][row2] = b;
}
/*!
* @brief helper for R (row vector) * M (matrix) * C (column vector)
*
* rmc stands for Row * Matrix * Column
*
* the result is scalar because R * M = Matrix1x2 (row vector),
* then Matrix1x2 * Vec2 (column vector) = Matrix1x1 (Scalar)
*
* @param[in] r row vector or matrix1x2
* @param[in] m matrix2x2
* @param[in] c column vector or matrix2x1
*
* @return scalar value e.g. Matrix1x1
*/
f_inline
float
glm_mat2_rmc(vec2 r, mat2 m, vec2 c) {
vec2 tmp;
glm_mat2_mulv(m, c, tmp);
return glm_vec2_dot(r, tmp);
}
#ifdef CGLM_SIMD
#if defined( __SSE__ ) || defined( __SSE2__ )
f_inline
void
glm_mul_sse2(mat4 m1, mat4 m2, mat4 dest) {
/* D = R * L (Column-Major) */
glmm_128 l, r0, r1, r2, r3, v0, v1, v2, v3;
l = glmm_load(m1[0]);
r0 = glmm_load(m2[0]);
r1 = glmm_load(m2[1]);
r2 = glmm_load(m2[2]);
r3 = glmm_load(m2[3]);
v0 = _mm_mul_ps(glmm_splat_x(r0), l);
v1 = _mm_mul_ps(glmm_splat_x(r1), l);
v2 = _mm_mul_ps(glmm_splat_x(r2), l);
v3 = _mm_mul_ps(glmm_splat_x(r3), l);
l = glmm_load(m1[1]);
v0 = glmm_fmadd(glmm_splat_y(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_y(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_y(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_y(r3), l, v3);
l = glmm_load(m1[2]);
v0 = glmm_fmadd(glmm_splat_z(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_z(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_z(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_z(r3), l, v3);
l = glmm_load(m1[3]);
v3 = glmm_fmadd(glmm_splat_w(r3), l, v3);
glmm_store(dest[0], v0);
glmm_store(dest[1], v1);
glmm_store(dest[2], v2);
glmm_store(dest[3], v3);
}
f_inline
void
glm_mul_rot_sse2(mat4 m1, mat4 m2, mat4 dest) {
/* D = R * L (Column-Major) */
glmm_128 l, r0, r1, r2, v0, v1, v2;
l = glmm_load(m1[0]);
r0 = glmm_load(m2[0]);
r1 = glmm_load(m2[1]);
r2 = glmm_load(m2[2]);
v0 = _mm_mul_ps(glmm_splat_x(r0), l);
v1 = _mm_mul_ps(glmm_splat_x(r1), l);
v2 = _mm_mul_ps(glmm_splat_x(r2), l);
l = glmm_load(m1[1]);
v0 = glmm_fmadd(glmm_splat_y(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_y(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_y(r2), l, v2);
l = glmm_load(m1[2]);
v0 = glmm_fmadd(glmm_splat_z(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_z(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_z(r2), l, v2);
glmm_store(dest[0], v0);
glmm_store(dest[1], v1);
glmm_store(dest[2], v2);
glmm_store(dest[3], glmm_load(m1[3]));
}
f_inline
void
glm_inv_tr_sse2(mat4 mat) {
__m128 r0, r1, r2, r3, x0, x1, x2, x3, x4, x5;
r0 = glmm_load(mat[0]);
r1 = glmm_load(mat[1]);
r2 = glmm_load(mat[2]);
r3 = glmm_load(mat[3]);
x1 = _mm_set_ps(1.0f, 0.0f, 0.0f, 0.0f);
_MM_TRANSPOSE4_PS(r0, r1, r2, x1);
x2 = glmm_shuff1(r3, 0, 0, 0, 0);
x3 = glmm_shuff1(r3, 1, 1, 1, 1);
x4 = glmm_shuff1(r3, 2, 2, 2, 2);
x5 = _mm_set1_ps(-0.f);
x0 = glmm_fmadd(r0, x2, glmm_fmadd(r1, x3, _mm_mul_ps(r2, x4)));
x0 = _mm_xor_ps(x0, x5);
x0 = _mm_add_ps(x0, x1);
glmm_store(mat[0], r0);
glmm_store(mat[1], r1);
glmm_store(mat[2], r2);
glmm_store(mat[3], x0);
}
#endif
#endif
/*!
* @brief this is similar to glm_mat4_mul but specialized to affine transform
*
* Matrix format should be:
* R R R X
* R R R Y
* R R R Z
* 0 0 0 W
*
* this reduces some multiplications. It should be faster than mat4_mul.
* if you are not sure about matrix format then DON'T use this! use mat4_mul
*
* @param[in] m1 affine matrix 1
* @param[in] m2 affine matrix 2
* @param[out] dest result matrix
*/
f_inline
void
glm_mul(mat4 m1, mat4 m2, mat4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mul_sse2(m1, m2, dest);
#elif defined(CGLM_NEON_FP)
glm_mul_neon(m1, m2, dest);
#else
float a00 = m1[0][0], a01 = m1[0][1], a02 = m1[0][2], a03 = m1[0][3],
a10 = m1[1][0], a11 = m1[1][1], a12 = m1[1][2], a13 = m1[1][3],
a20 = m1[2][0], a21 = m1[2][1], a22 = m1[2][2], a23 = m1[2][3],
a30 = m1[3][0], a31 = m1[3][1], a32 = m1[3][2], a33 = m1[3][3],
b00 = m2[0][0], b01 = m2[0][1], b02 = m2[0][2],
b10 = m2[1][0], b11 = m2[1][1], b12 = m2[1][2],
b20 = m2[2][0], b21 = m2[2][1], b22 = m2[2][2],
b30 = m2[3][0], b31 = m2[3][1], b32 = m2[3][2], b33 = m2[3][3];
dest[0][0] = a00 * b00 + a10 * b01 + a20 * b02;
dest[0][1] = a01 * b00 + a11 * b01 + a21 * b02;
dest[0][2] = a02 * b00 + a12 * b01 + a22 * b02;
dest[0][3] = a03 * b00 + a13 * b01 + a23 * b02;
dest[1][0] = a00 * b10 + a10 * b11 + a20 * b12;
dest[1][1] = a01 * b10 + a11 * b11 + a21 * b12;
dest[1][2] = a02 * b10 + a12 * b11 + a22 * b12;
dest[1][3] = a03 * b10 + a13 * b11 + a23 * b12;
dest[2][0] = a00 * b20 + a10 * b21 + a20 * b22;
dest[2][1] = a01 * b20 + a11 * b21 + a21 * b22;
dest[2][2] = a02 * b20 + a12 * b21 + a22 * b22;
dest[2][3] = a03 * b20 + a13 * b21 + a23 * b22;
dest[3][0] = a00 * b30 + a10 * b31 + a20 * b32 + a30 * b33;
dest[3][1] = a01 * b30 + a11 * b31 + a21 * b32 + a31 * b33;
dest[3][2] = a02 * b30 + a12 * b31 + a22 * b32 + a32 * b33;
dest[3][3] = a03 * b30 + a13 * b31 + a23 * b32 + a33 * b33;
#endif
}
/*!
* @brief this is similar to glm_mat4_mul but specialized to affine transform
*
* Right Matrix format should be:
* R R R 0
* R R R 0
* R R R 0
* 0 0 0 1
*
* this reduces some multiplications. It should be faster than mat4_mul.
* if you are not sure about matrix format then DON'T use this! use mat4_mul
*
* @param[in] m1 affine matrix 1
* @param[in] m2 affine matrix 2
* @param[out] dest result matrix
*/
f_inline
void
glm_mul_rot(mat4 m1, mat4 m2, mat4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mul_rot_sse2(m1, m2, dest);
#elif defined(CGLM_NEON_FP)
glm_mul_rot_neon(m1, m2, dest);
#else
float a00 = m1[0][0], a01 = m1[0][1], a02 = m1[0][2], a03 = m1[0][3],
a10 = m1[1][0], a11 = m1[1][1], a12 = m1[1][2], a13 = m1[1][3],
a20 = m1[2][0], a21 = m1[2][1], a22 = m1[2][2], a23 = m1[2][3],
a30 = m1[3][0], a31 = m1[3][1], a32 = m1[3][2], a33 = m1[3][3],
b00 = m2[0][0], b01 = m2[0][1], b02 = m2[0][2],
b10 = m2[1][0], b11 = m2[1][1], b12 = m2[1][2],
b20 = m2[2][0], b21 = m2[2][1], b22 = m2[2][2];
dest[0][0] = a00 * b00 + a10 * b01 + a20 * b02;
dest[0][1] = a01 * b00 + a11 * b01 + a21 * b02;
dest[0][2] = a02 * b00 + a12 * b01 + a22 * b02;
dest[0][3] = a03 * b00 + a13 * b01 + a23 * b02;
dest[1][0] = a00 * b10 + a10 * b11 + a20 * b12;
dest[1][1] = a01 * b10 + a11 * b11 + a21 * b12;
dest[1][2] = a02 * b10 + a12 * b11 + a22 * b12;
dest[1][3] = a03 * b10 + a13 * b11 + a23 * b12;
dest[2][0] = a00 * b20 + a10 * b21 + a20 * b22;
dest[2][1] = a01 * b20 + a11 * b21 + a21 * b22;
dest[2][2] = a02 * b20 + a12 * b21 + a22 * b22;
dest[2][3] = a03 * b20 + a13 * b21 + a23 * b22;
dest[3][0] = a30;
dest[3][1] = a31;
dest[3][2] = a32;
dest[3][3] = a33;
#endif
}
/*!
* @brief inverse orthonormal rotation + translation matrix (ridig-body)
*
* @code
* X = | R T | X' = | R' -R'T |
* | 0 1 | | 0 1 |
* @endcode
*
* @param[in,out] mat matrix
*/
f_inline
void
glm_inv_tr(mat4 mat) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_inv_tr_sse2(mat);
#elif defined(CGLM_NEON_FP)
glm_inv_tr_neon(mat);
#else
f_align(16) mat3 r;
f_align(8) vec3 t;
/* rotate */
glm_mat4_pick3t(mat, r);
glm_mat4_ins3(r, mat);
/* translate */
glm_mat3_mulv(r, mat[3], t);
glm_vec3_negate(t);
glm_vec3_copy(t, mat[3]);
#endif
}
/*!
* @brief creates NEW translate transform matrix by v vector
*
* @param[out] m affine transfrom
* @param[in] v translate vector [x, y, z]
*/
f_inline
void
glm_translate_make(mat4 m, vec3 v) {
glm_mat4_identity(m);
glm_vec3_copy(v, m[3]);
}
/*!
* @brief scale existing transform matrix by v vector
* and store result in dest
*
* @param[in] m affine transfrom
* @param[in] v scale vector [x, y, z]
* @param[out] dest scaled matrix
*/
f_inline
void
glm_scale_to(mat4 m, vec3 v, mat4 dest) {
glm_vec4_scale(m[0], v[0], dest[0]);
glm_vec4_scale(m[1], v[1], dest[1]);
glm_vec4_scale(m[2], v[2], dest[2]);
glm_vec4_copy(m[3], dest[3]);
}
/*!
* @brief creates NEW scale matrix by v vector
*
* @param[out] m affine transfrom
* @param[in] v scale vector [x, y, z]
*/
f_inline
void
glm_scale_make(mat4 m, vec3 v) {
glm_mat4_identity(m);
m[0][0] = v[0];
m[1][1] = v[1];
m[2][2] = v[2];
}
/*!
* @brief scales existing transform matrix by v vector
* and stores result in same matrix
*
* @param[in, out] m affine transfrom
* @param[in] v scale vector [x, y, z]
*/
f_inline
void
glm_scale(mat4 m, vec3 v) {
glm_scale_to(m, v, m);
}
/*!
* @brief applies uniform scale to existing transform matrix v = [s, s, s]
* and stores result in same matrix
*
* @param[in, out] m affine transfrom
* @param[in] s scale factor
*/
f_inline
void
glm_scale_uni(mat4 m, float s) {
f_align(8) vec3 v = { s, s, s };
glm_scale_to(m, v, m);
}
/*!
* @brief creates NEW rotation matrix by angle and axis
*
* axis will be normalized so you don't need to normalize it
*
* @param[out] m affine transfrom
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
f_inline
void
glm_rotate_make(mat4 m, float angle, vec3 axis) {
f_align(8) vec3 axisn, v, vs;
float c;
c = cosf(angle);
glm_vec3_normalize_to(axis, axisn);
glm_vec3_scale(axisn, 1.0f - c, v);
glm_vec3_scale(axisn, sinf(angle), vs);
glm_vec3_scale(axisn, v[0], m[0]);
glm_vec3_scale(axisn, v[1], m[1]);
glm_vec3_scale(axisn, v[2], m[2]);
m[0][0] += c; m[1][0] -= vs[2]; m[2][0] += vs[1];
m[0][1] += vs[2]; m[1][1] += c; m[2][1] -= vs[0];
m[0][2] -= vs[1]; m[1][2] += vs[0]; m[2][2] += c;
m[0][3] = m[1][3] = m[2][3] = m[3][0] = m[3][1] = m[3][2] = 0.0f;
m[3][3] = 1.0f;
}
/*!
* @brief decompose scale vector
*
* @param[in] m affine transform
* @param[out] s scale vector (Sx, Sy, Sz)
*/
f_inline
void
glm_decompose_scalev(mat4 m, vec3 s) {
s[0] = glm_vec3_norm(m[0]);
s[1] = glm_vec3_norm(m[1]);
s[2] = glm_vec3_norm(m[2]);
}
/*!
* @brief returns true if matrix is uniform scaled. This is helpful for
* creating normal matrix.
*
* @param[in] m m
*
* @return boolean
*/
f_inline
byte
glm_uniscaled(mat4 m) {
f_align(8) vec3 s;
glm_decompose_scalev(m, s);
return glm_vec3_eq_all(s);
}
/*!
* @brief decompose rotation matrix (mat4) and scale vector [Sx, Sy, Sz]
* DON'T pass projected matrix here
*
* @param[in] m affine transform
* @param[out] r rotation matrix
* @param[out] s scale matrix
*/
f_inline
void
glm_decompose_rs(mat4 m, mat4 r, vec3 s) {
f_align(16) vec4 t = {0.0f, 0.0f, 0.0f, 1.0f};
f_align(8) vec3 v;
glm_vec4_copy(m[0], r[0]);
glm_vec4_copy(m[1], r[1]);
glm_vec4_copy(m[2], r[2]);
glm_vec4_copy(t, r[3]);
s[0] = glm_vec3_norm(m[0]);
s[1] = glm_vec3_norm(m[1]);
s[2] = glm_vec3_norm(m[2]);
glm_vec4_scale(r[0], 1.0f/s[0], r[0]);
glm_vec4_scale(r[1], 1.0f/s[1], r[1]);
glm_vec4_scale(r[2], 1.0f/s[2], r[2]);
/* Note from Apple Open Source (assume that the matrix is orthonormal):
check for a coordinate system flip. If the determinant
is -1, then negate the matrix and the scaling factors. */
glm_vec3_cross(m[0], m[1], v);
if (glm_vec3_dot(v, m[2]) < 0.0f) {
glm_vec4_negate(r[0]);
glm_vec4_negate(r[1]);
glm_vec4_negate(r[2]);
glm_vec3_negate(s);
}
}
/*!
* @brief decompose affine transform, TODO: extract shear factors.
* DON'T pass projected matrix here
*
* @param[in] m affine transfrom
* @param[out] t translation vector
* @param[out] r rotation matrix (mat4)
* @param[out] s scaling vector [X, Y, Z]
*/
f_inline
void
glm_decompose(mat4 m, vec4 t, mat4 r, vec3 s) {
glm_vec4_copy(m[3], t);
glm_decompose_rs(m, r, s);
}
/*!
* @brief translate existing transform matrix by v vector
* and stores result in same matrix
*
* @param[in, out] m affine transfrom
* @param[in] v translate vector [x, y, z]
*/
f_inline
void
glm_translate(mat4 m, vec3 v) {
#if defined(CGLM_SIMD)
glmm_128 m0, m1, m2, m3;
m0 = glmm_load(m[0]);
m1 = glmm_load(m[1]);
m2 = glmm_load(m[2]);
m3 = glmm_load(m[3]);
glmm_store(m[3],
glmm_fmadd(m0, glmm_set1(v[0]),
glmm_fmadd(m1, glmm_set1(v[1]),
glmm_fmadd(m2, glmm_set1(v[2]), m3))));
#else
glm_vec4_muladds(m[0], v[0], m[3]);
glm_vec4_muladds(m[1], v[1], m[3]);
glm_vec4_muladds(m[2], v[2], m[3]);
#endif
}
/*!
* @brief translate existing transform matrix by v vector
* and store result in dest
*
* source matrix will remain same
*
* @param[in] m affine transfrom
* @param[in] v translate vector [x, y, z]
* @param[out] dest translated matrix
*/
f_inline
void
glm_translate_to(mat4 m, vec3 v, mat4 dest) {
glm_mat4_copy(m, dest);
glm_translate(dest, v);
}
/*!
* @brief translate existing transform matrix by x factor
*
* @param[in, out] m affine transfrom
* @param[in] x x factor
*/
f_inline
void
glm_translate_x(mat4 m, float x) {
#if defined(CGLM_SIMD)
glmm_store(m[3], glmm_fmadd(glmm_load(m[0]), glmm_set1(x), glmm_load(m[3])));
#else
vec4 v1;
glm_vec4_scale(m[0], x, v1);
glm_vec4_add(v1, m[3], m[3]);
#endif
}
/*!
* @brief translate existing transform matrix by y factor
*
* @param[in, out] m affine transfrom
* @param[in] y y factor
*/
f_inline
void
glm_translate_y(mat4 m, float y) {
#if defined(CGLM_SIMD)
glmm_store(m[3], glmm_fmadd(glmm_load(m[1]), glmm_set1(y), glmm_load(m[3])));
#else
vec4 v1;
glm_vec4_scale(m[1], y, v1);
glm_vec4_add(v1, m[3], m[3]);
#endif
}
/*!
* @brief translate existing transform matrix by z factor
*
* @param[in, out] m affine transfrom
* @param[in] z z factor
*/
f_inline
void
glm_translate_z(mat4 m, float z) {
#if defined(CGLM_SIMD)
glmm_store(m[3], glmm_fmadd(glmm_load(m[2]), glmm_set1(z), glmm_load(m[3])));
#else
vec4 v1;
glm_vec4_scale(m[2], z, v1);
glm_vec4_add(v1, m[3], m[3]);
#endif
}
/*!
* @brief rotate existing transform matrix around X axis by angle
* and store result in dest
*
* @param[in] m affine transfrom
* @param[in] angle angle (radians)
* @param[out] dest rotated matrix
*/
f_inline
void
glm_rotate_x(mat4 m, float angle, mat4 dest) {
f_align(16) mat4 t = GLM_MAT4_IDENTITY_INIT;
float c, s;
c = cosf(angle);
s = sinf(angle);
t[1][1] = c;
t[1][2] = s;
t[2][1] = -s;
t[2][2] = c;
glm_mul_rot(m, t, dest);
}
/*!
* @brief rotate existing transform matrix around Y axis by angle
* and store result in dest
*
* @param[in] m affine transfrom
* @param[in] angle angle (radians)
* @param[out] dest rotated matrix
*/
f_inline
void
glm_rotate_y(mat4 m, float angle, mat4 dest) {
f_align(16) mat4 t = GLM_MAT4_IDENTITY_INIT;
float c, s;
c = cosf(angle);
s = sinf(angle);
t[0][0] = c;
t[0][2] = -s;
t[2][0] = s;
t[2][2] = c;
glm_mul_rot(m, t, dest);
}
/*!
* @brief rotate existing transform matrix around Z axis by angle
* and store result in dest
*
* @param[in] m affine transfrom
* @param[in] angle angle (radians)
* @param[out] dest rotated matrix
*/
f_inline
void
glm_rotate_z(mat4 m, float angle, mat4 dest) {
f_align(16) mat4 t = GLM_MAT4_IDENTITY_INIT;
float c, s;
c = cosf(angle);
s = sinf(angle);
t[0][0] = c;
t[0][1] = s;
t[1][0] = -s;
t[1][1] = c;
glm_mul_rot(m, t, dest);
}
/*!
* @brief rotate existing transform matrix around given axis by angle
*
* @param[in, out] m affine transfrom
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
f_inline
void
glm_rotate(mat4 m, float angle, vec3 axis) {
f_align(16) mat4 rot;
glm_rotate_make(rot, angle, axis);
glm_mul_rot(m, rot, m);
}
/*!
* @brief rotate existing transform
* around given axis by angle at given pivot point (rotation center)
*
* @param[in, out] m affine transfrom
* @param[in] pivot rotation center
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
f_inline
void
glm_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis) {
f_align(8) vec3 pivotInv;
glm_vec3_negate_to(pivot, pivotInv);
glm_translate(m, pivot);
glm_rotate(m, angle, axis);
glm_translate(m, pivotInv);
}
/*!
* @brief creates NEW rotation matrix by angle and axis at given point
*
* this creates rotation matrix, it assumes you don't have a matrix
*
* this should work faster than glm_rotate_at because it reduces
* one glm_translate.
*
* @param[out] m affine transfrom
* @param[in] pivot rotation center
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
f_inline
void
glm_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis) {
f_align(8) vec3 pivotInv;
glm_vec3_negate_to(pivot, pivotInv);
glm_translate_make(m, pivot);
glm_rotate(m, angle, axis);
glm_translate(m, pivotInv);
}
/*!
* @brief rotate existing transform matrix around given axis by angle around self (doesn't affected by position)
*
* @param[in, out] m affine transfrom
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
f_inline
void
glm_spin(mat4 m, float angle, vec3 axis) {
f_align(16) mat4 rot;
glm_rotate_atm(rot, m[3], angle, axis);
glm_mat4_mul(m, rot, m);
}
/*!
* @brief translate existing transform matrix by v vector
* and stores result in same matrix
*
* this is POST transform, applies to existing transform as last transfrom
*
* @param[in, out] m affine transfrom
* @param[in] v translate vector [x, y, z]
*/
f_inline
void
glm_translated(mat4 m, vec3 v) {
glm_vec3_add(m[3], v, m[3]);
}
/*!
* @brief translate existing transform matrix by v vector
* and store result in dest
*
* source matrix will remain same
*
* this is POST transform, applies to existing transform as last transfrom
*
* @param[in] m affine transfrom
* @param[in] v translate vector [x, y, z]
* @param[out] dest translated matrix
*/
f_inline
void
glm_translated_to(mat4 m, vec3 v, mat4 dest) {
glm_mat4_copy(m, dest);
glm_translated(dest, v);
}
/*!
* @brief translate existing transform matrix by x factor
*
* this is POST transform, applies to existing transform as last transfrom
*
* @param[in, out] m affine transfrom
* @param[in] x x factor
*/
f_inline
void
glm_translated_x(mat4 m, float x) {
m[3][0] += x;
}
/*!
* @brief translate existing transform matrix by y factor
*
* this is POST transform, applies to existing transform as last transfrom
*
* @param[in, out] m affine transfrom
* @param[in] y y factor
*/
f_inline
void
glm_translated_y(mat4 m, float y) {
m[3][1] += y;
}
/*!
* @brief translate existing transform matrix by z factor
*
* this is POST transform, applies to existing transform as last transfrom
*
* @param[in, out] m affine transfrom
* @param[in] z z factor
*/
f_inline
void
glm_translated_z(mat4 m, float z) {
m[3][2] += z;
}
/*!
* @brief rotate existing transform matrix around X axis by angle
* and store result in dest
*
* this is POST transform, applies to existing transform as last transfrom
*
* @param[in] m affine transfrom
* @param[in] angle angle (radians)
* @param[out] dest rotated matrix
*/
f_inline
void
glm_rotated_x(mat4 m, float angle, mat4 dest) {
f_align(16) mat4 t = GLM_MAT4_IDENTITY_INIT;
float c, s;
c = cosf(angle);
s = sinf(angle);
t[1][1] = c;
t[1][2] = s;
t[2][1] = -s;
t[2][2] = c;
glm_mul_rot(t, m, dest);
}
/*!
* @brief rotate existing transform matrix around Y axis by angle
* and store result in dest
*
* this is POST transform, applies to existing transform as last transfrom
*
* @param[in] m affine transfrom
* @param[in] angle angle (radians)
* @param[out] dest rotated matrix
*/
f_inline
void
glm_rotated_y(mat4 m, float angle, mat4 dest) {
f_align(16) mat4 t = GLM_MAT4_IDENTITY_INIT;
float c, s;
c = cosf(angle);
s = sinf(angle);
t[0][0] = c;
t[0][2] = -s;
t[2][0] = s;
t[2][2] = c;
glm_mul_rot(t, m, dest);
}
/*!
* @brief rotate existing transform matrix around Z axis by angle
* and store result in dest
*
* this is POST transform, applies to existing transform as last transfrom
*
* @param[in] m affine transfrom
* @param[in] angle angle (radians)
* @param[out] dest rotated matrix
*/
f_inline
void
glm_rotated_z(mat4 m, float angle, mat4 dest) {
f_align(16) mat4 t = GLM_MAT4_IDENTITY_INIT;
float c, s;
c = cosf(angle);
s = sinf(angle);
t[0][0] = c;
t[0][1] = s;
t[1][0] = -s;
t[1][1] = c;
glm_mul_rot(t, m, dest);
}
/*!
* @brief rotate existing transform matrix around given axis by angle
*
* this is POST transform, applies to existing transform as last transfrom
*
* @param[in, out] m affine transfrom
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
f_inline
void
glm_rotated(mat4 m, float angle, vec3 axis) {
f_align(16) mat4 rot;
glm_rotate_make(rot, angle, axis);
glm_mul_rot(rot, m, m);
}
/*!
* @brief rotate existing transform
* around given axis by angle at given pivot point (rotation center)
*
* this is POST transform, applies to existing transform as last transfrom
*
* @param[in, out] m affine transfrom
* @param[in] pivot rotation center
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
f_inline
void
glm_rotated_at(mat4 m, vec3 pivot, float angle, vec3 axis) {
f_align(8) vec3 pivotInv;
glm_vec3_negate_to(pivot, pivotInv);
glm_translated(m, pivot);
glm_rotated(m, angle, axis);
glm_translated(m, pivotInv);
}
/*!
* @brief rotate existing transform matrix around given axis by angle around self (doesn't affected by position)
*
* this is POST transform, applies to existing transform as last transfrom
*
* @param[in, out] m affine transfrom
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
f_inline
void
glm_spinned(mat4 m, float angle, vec3 axis) {
f_align(16) mat4 rot;
glm_rotate_atm(rot, m[3], angle, axis);
glm_mat4_mul(rot, m, m);
}
/*
Plane equation: Ax + By + Cz + D = 0;
It stored in vec4 as [A, B, C, D]. (A, B, C) is normal and D is distance
*/
/*
Functions:
f_inline void glm_plane_normalize(vec4 plane);
*/
/*!
* @brief normalizes a plane
*
* @param[in, out] plane plane to normalize
*/
f_inline
void
glm_plane_normalize(vec4 plane) {
float norm;
if ((norm = glm_vec3_norm(plane)) == 0.0f) {
glm_vec4_zero(plane);
return;
}
glm_vec4_scale(plane, 1.0f / norm, plane);
}
/*!
* @brief returns field of view angle along the Y-axis (in radians)
*
* if you need to degrees, use glm_deg to convert it or use this:
* fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
*
* @param[in] proj perspective projection matrix
*/
f_inline
float
glm_persp_fovy(mat4 proj) {
return 2.0f * atanf(1.0f / proj[1][1]);
}
/*!
* @brief returns aspect ratio of perspective projection
*
* @param[in] proj perspective projection matrix
*/
f_inline
float
glm_persp_aspect(mat4 proj) {
return proj[1][1] / proj[0][0];
}
/*!
* @brief set up orthographic projection matrix
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[out] dest result matrix
*/
f_inline
void
glm_ortho_rh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest) {
float rl, tb, fn;
glm_mat4_zero(dest);
rl = 1.0f / (right - left);
tb = 1.0f / (top - bottom);
fn =-1.0f / (farZ - nearZ);
dest[0][0] = 2.0f * rl;
dest[1][1] = 2.0f * tb;
dest[2][2] = 2.0f * fn;
dest[3][0] =-(right + left) * rl;
dest[3][1] =-(top + bottom) * tb;
dest[3][2] = (farZ + nearZ) * fn;
dest[3][3] = 1.0f;
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[out] dest result matrix
*/
f_inline
void
glm_ortho_aabb_rh_no(vec3 box[2], mat4 dest) {
glm_ortho_rh_no(box[0][0], box[1][0],
box[0][1], box[1][1],
-box[1][2], -box[0][2],
dest);
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding
* @param[out] dest result matrix
*/
f_inline
void
glm_ortho_aabb_p_rh_no(vec3 box[2], float padding, mat4 dest) {
glm_ortho_rh_no(box[0][0] - padding, box[1][0] + padding,
box[0][1] - padding, box[1][1] + padding,
-(box[1][2] + padding), -(box[0][2] - padding),
dest);
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding for near and far
* @param[out] dest result matrix
*/
f_inline
void
glm_ortho_aabb_pz_rh_no(vec3 box[2], float padding, mat4 dest) {
glm_ortho_rh_no(box[0][0], box[1][0],
box[0][1], box[1][1],
-(box[1][2] + padding), -(box[0][2] - padding),
dest);
}
/*!
* @brief set up unit orthographic projection matrix
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ration ( width / height )
* @param[out] dest result matrix
*/
f_inline
void
glm_ortho_default_rh_no(float aspect, mat4 dest) {
if (aspect >= 1.0f) {
glm_ortho_rh_no(-aspect, aspect, -1.0f, 1.0f, -100.0f, 100.0f, dest);
return;
}
aspect = 1.0f / aspect;
glm_ortho_rh_no(-1.0f, 1.0f, -aspect, aspect, -100.0f, 100.0f, dest);
}
/*!
* @brief set up orthographic projection matrix with given CUBE size
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in] size cube size
* @param[out] dest result matrix
*/
f_inline
void
glm_ortho_default_s_rh_no(float aspect, float size, mat4 dest) {
if (aspect >= 1.0f) {
glm_ortho_rh_no(-size * aspect,
size * aspect,
-size,
size,
-size - 100.0f,
size + 100.0f,
dest);
return;
}
glm_ortho_rh_no(-size,
size,
-size / aspect,
size / aspect,
-size - 100.0f,
size + 100.0f,
dest);
}
/*!
* @brief set up perspective peprojection matrix
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[out] dest result matrix
*/
f_inline
void
glm_frustum_rh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest) {
float rl, tb, fn, nv;
glm_mat4_zero(dest);
rl = 1.0f / (right - left);
tb = 1.0f / (top - bottom);
fn =-1.0f / (farZ - nearZ);
nv = 2.0f * nearZ;
dest[0][0] = nv * rl;
dest[1][1] = nv * tb;
dest[2][0] = (right + left) * rl;
dest[2][1] = (top + bottom) * tb;
dest[2][2] = (farZ + nearZ) * fn;
dest[2][3] =-1.0f;
dest[3][2] = farZ * nv * fn;
}
/*!
* @brief set up perspective projection matrix
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] fovy field of view angle
* @param[in] aspect aspect ratio ( width / height )
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping planes
* @param[out] dest result matrix
*/
f_inline
void
glm_perspective_rh_no(float fovy,
float aspect,
float nearZ,
float farZ,
mat4 dest) {
float f, fn;
glm_mat4_zero(dest);
f = 1.0f / tanf(fovy * 0.5f);
fn = 1.0f / (nearZ - farZ);
dest[0][0] = f / aspect;
dest[1][1] = f;
dest[2][2] = (nearZ + farZ) * fn;
dest[2][3] =-1.0f;
dest[3][2] = 2.0f * nearZ * farZ * fn;
}
/*!
* @brief set up perspective projection matrix with default near/far
* and angle values with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[out] dest result matrix
*/
f_inline
void
glm_perspective_default_rh_no(float aspect, mat4 dest) {
glm_perspective_rh_no(GLM_PI_4f, aspect, 0.01f, 100.0f, dest);
}
/*!
* @brief resize perspective matrix by aspect ratio ( width / height )
* this makes very easy to resize proj matrix when window /viewport
* resized with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in, out] proj perspective projection matrix
*/
f_inline
void
glm_perspective_resize_rh_no(float aspect, mat4 proj) {
if (proj[0][0] == 0.0f)
return;
proj[0][0] = proj[1][1] / aspect;
}
/*!
* @brief extend perspective projection matrix's far distance
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* this function does not guarantee far >= near, be aware of that!
*
* @param[in, out] proj projection matrix to extend
* @param[in] deltaFar distance from existing far (negative to shink)
*/
f_inline
void
glm_persp_move_far_rh_no(mat4 proj, float deltaFar) {
float fn, farZ, nearZ, p22, p32;
p22 = proj[2][2];
p32 = proj[3][2];
nearZ = p32 / (p22 - 1.0f);
farZ = p32 / (p22 + 1.0f) + deltaFar;
fn = 1.0f / (nearZ - farZ);
proj[2][2] = (farZ + nearZ) * fn;
proj[3][2] = 2.0f * nearZ * farZ * fn;
}
/*!
* @brief decomposes frustum values of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
* @param[out] top top
* @param[out] bottom bottom
* @param[out] left left
* @param[out] right right
*/
f_inline
void
glm_persp_decomp_rh_no(mat4 proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right) {
float m00, m11, m20, m21, m22, m32, n, f;
float n_m11, n_m00;
m00 = proj[0][0];
m11 = proj[1][1];
m20 = proj[2][0];
m21 = proj[2][1];
m22 = proj[2][2];
m32 = proj[3][2];
n = m32 / (m22 - 1.0f);
f = m32 / (m22 + 1.0f);
n_m11 = n / m11;
n_m00 = n / m00;
*nearZ = n;
*farZ = f;
*bottom = n_m11 * (m21 - 1.0f);
*top = n_m11 * (m21 + 1.0f);
*left = n_m00 * (m20 - 1.0f);
*right = n_m00 * (m20 + 1.0f);
}
/*!
* @brief decomposes frustum values of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
* this makes easy to get all values at once
*
* @param[in] proj perspective projection matrix
* @param[out] dest array
*/
f_inline
void
glm_persp_decompv_rh_no(mat4 proj, float dest[6]) {
glm_persp_decomp_rh_no(proj, &dest[0], &dest[1], &dest[2],
&dest[3], &dest[4], &dest[5]);
}
/*!
* @brief decomposes left and right values of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
* x stands for x axis (left / right axis)
*
* @param[in] proj perspective projection matrix
* @param[out] left left
* @param[out] right right
*/
f_inline
void
glm_persp_decomp_x_rh_no(mat4 proj,
float * __restrict left,
float * __restrict right) {
float nearZ, m20, m00, m22;
m00 = proj[0][0];
m20 = proj[2][0];
m22 = proj[2][2];
nearZ = proj[3][2] / (m22 - 1.0f);
*left = nearZ * (m20 - 1.0f) / m00;
*right = nearZ * (m20 + 1.0f) / m00;
}
/*!
* @brief decomposes top and bottom values of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
* y stands for y axis (top / botom axis)
*
* @param[in] proj perspective projection matrix
* @param[out] top top
* @param[out] bottom bottom
*/
f_inline
void
glm_persp_decomp_y_rh_no(mat4 proj,
float * __restrict top,
float * __restrict bottom) {
float nearZ, m21, m11, m22;
m21 = proj[2][1];
m11 = proj[1][1];
m22 = proj[2][2];
nearZ = proj[3][2] / (m22 - 1.0f);
*bottom = nearZ * (m21 - 1.0f) / m11;
*top = nearZ * (m21 + 1.0f) / m11;
}
/*!
* @brief decomposes near and far values of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
* z stands for z axis (near / far axis)
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
*/
f_inline
void
glm_persp_decomp_z_rh_no(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ) {
float m32, m22;
m32 = proj[3][2];
m22 = proj[2][2];
*nearZ = m32 / (m22 - 1.0f);
*farZ = m32 / (m22 + 1.0f);
}
/*!
* @brief decomposes far value of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] farZ far
*/
f_inline
void
glm_persp_decomp_far_rh_no(mat4 proj, float * __restrict farZ) {
*farZ = proj[3][2] / (proj[2][2] + 1.0f);
}
/*!
* @brief decomposes near value of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
*/
f_inline
void
glm_persp_decomp_near_rh_no(mat4 proj, float * __restrict nearZ) {
*nearZ = proj[3][2] / (proj[2][2] - 1.0f);
}
/*!
* @brief returns sizes of near and far planes of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[in] fovy fovy (see brief)
* @param[out] dest sizes order: [Wnear, Hnear, Wfar, Hfar]
*/
f_inline
void
glm_persp_sizes_rh_no(mat4 proj, float fovy, vec4 dest) {
float t, a, nearZ, farZ;
t = 2.0f * tanf(fovy * 0.5f);
a = glm_persp_aspect(proj);
glm_persp_decomp_z_rh_no(proj, &nearZ, &farZ);
dest[1] = t * nearZ;
dest[3] = t * farZ;
dest[0] = a * dest[1];
dest[2] = a * dest[3];
}
/*!
* @brief returns field of view angle along the Y-axis (in radians)
* with a right-hand coordinate system and a clip-space of [-1, 1].
*
* if you need to degrees, use glm_deg to convert it or use this:
* fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
*
* @param[in] proj perspective projection matrix
*/
f_inline
float
glm_persp_fovy_rh_no(mat4 proj) {
return glm_persp_fovy(proj);
}
/*!
* @brief returns aspect ratio of perspective projection
* with a right-hand coordinate system and a clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
*/
f_inline
float
glm_persp_aspect_rh_no(mat4 proj) {
return glm_persp_aspect(proj);
}
/*!
* @brief set up view matrix with right handed coordinate system.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] center center vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
f_inline
void
glm_lookat_rh(vec3 eye, vec3 center, vec3 up, mat4 dest) {
f_align(8) vec3 f, u, s;
glm_vec3_sub(center, eye, f);
glm_vec3_normalize(f);
glm_vec3_crossn(f, up, s);
glm_vec3_cross(s, f, u);
dest[0][0] = s[0];
dest[0][1] = u[0];
dest[0][2] =-f[0];
dest[1][0] = s[1];
dest[1][1] = u[1];
dest[1][2] =-f[1];
dest[2][0] = s[2];
dest[2][1] = u[2];
dest[2][2] =-f[2];
dest[3][0] =-glm_vec3_dot(s, eye);
dest[3][1] =-glm_vec3_dot(u, eye);
dest[3][2] = glm_vec3_dot(f, eye);
dest[0][3] = dest[1][3] = dest[2][3] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief set up view matrix with right handed coordinate system.
*
* convenient wrapper for lookat: if you only have direction not target self
* then this might be useful. Because you need to get target from direction.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
f_inline
void
glm_look_rh(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
f_align(8) vec3 target;
glm_vec3_add(eye, dir, target);
glm_lookat_rh(eye, target, up, dest);
}
/*!
* @brief set up view matrix with right handed coordinate system.
*
* convenient wrapper for look: if you only have direction and if you don't
* care what UP vector is then this might be useful to create view matrix
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[out] dest result matrix
*/
f_inline
void
glm_look_anyup_rh(vec3 eye, vec3 dir, mat4 dest) {
f_align(8) vec3 up;
glm_vec3_ortho(dir, up);
glm_look_rh(eye, dir, up, dest);
}
/*!
* @brief set up view matrix with right handed coordinate system.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] center center vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
f_inline
void
glm_lookat_rh_no(vec3 eye, vec3 center, vec3 up, mat4 dest) {
glm_lookat_rh(eye, center, up, dest);
}
/*!
* @brief set up view matrix with right handed coordinate system.
*
* convenient wrapper for lookat: if you only have direction not target self
* then this might be useful. Because you need to get target from direction.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
f_inline
void
glm_look_rh_no(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
glm_look_rh(eye, dir, up, dest);
}
/*!
* @brief set up view matrix with right handed coordinate system.
*
* convenient wrapper for look: if you only have direction and if you don't
* care what UP vector is then this might be useful to create view matrix
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[out] dest result matrix
*/
f_inline
void
glm_look_anyup_rh_no(vec3 eye, vec3 dir, mat4 dest) {
glm_look_anyup_rh(eye, dir, dest);
}
/*!
* @brief set up perspective peprojection matrix
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[out] dest result matrix
*/
f_inline
void
glm_frustum(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_frustum_lh_zo(left, right, bottom, top, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_frustum_lh_no(left, right, bottom, top, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_frustum_rh_zo(left, right, bottom, top, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_frustum_rh_no(left, right, bottom, top, nearZ, farZ, dest);
#endif
}
/*!
* @brief set up orthographic projection matrix
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[out] dest result matrix
*/
f_inline
void
glm_ortho(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_ortho_lh_zo(left, right, bottom, top, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_ortho_lh_no(left, right, bottom, top, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_ortho_rh_zo(left, right, bottom, top, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_ortho_rh_no(left, right, bottom, top, nearZ, farZ, dest);
#endif
}
/*!
* @brief set up orthographic projection matrix using bounding box
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[out] dest result matrix
*/
f_inline
void
glm_ortho_aabb(vec3 box[2], mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_ortho_aabb_lh_zo(box, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_ortho_aabb_lh_no(box, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_ortho_aabb_rh_zo(box, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_ortho_aabb_rh_no(box, dest);
#endif
}
/*!
* @brief set up orthographic projection matrix using bounding box
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding
* @param[out] dest result matrix
*/
f_inline
void
glm_ortho_aabb_p(vec3 box[2], float padding, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_ortho_aabb_p_lh_zo(box, padding, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_ortho_aabb_p_lh_no(box, padding, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_ortho_aabb_p_rh_zo(box, padding, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_ortho_aabb_p_rh_no(box, padding, dest);
#endif
}
/*!
* @brief set up orthographic projection matrix using bounding box
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding for near and far
* @param[out] dest result matrix
*/
f_inline
void
glm_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_ortho_aabb_pz_lh_zo(box, padding, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_ortho_aabb_pz_lh_no(box, padding, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_ortho_aabb_pz_rh_zo(box, padding, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_ortho_aabb_pz_rh_no(box, padding, dest);
#endif
}
/*!
* @brief set up unit orthographic projection matrix
*
* @param[in] aspect aspect ration ( width / height )
* @param[out] dest result matrix
*/
f_inline
void
glm_ortho_default(float aspect, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_ortho_default_lh_zo(aspect, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_ortho_default_lh_no(aspect, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_ortho_default_rh_zo(aspect, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_ortho_default_rh_no(aspect, dest);
#endif
}
/*!
* @brief set up orthographic projection matrix with given CUBE size
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in] size cube size
* @param[out] dest result matrix
*/
f_inline
void
glm_ortho_default_s(float aspect, float size, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_ortho_default_s_lh_zo(aspect, size, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_ortho_default_s_lh_no(aspect, size, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_ortho_default_s_rh_zo(aspect, size, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_ortho_default_s_rh_no(aspect, size, dest);
#endif
}
/*!
* @brief set up perspective projection matrix
*
* @param[in] fovy field of view angle
* @param[in] aspect aspect ratio ( width / height )
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping planes
* @param[out] dest result matrix
*/
f_inline
void
glm_perspective(float fovy, float aspect, float nearZ, float farZ, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_perspective_lh_zo(fovy, aspect, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_perspective_lh_no(fovy, aspect, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_perspective_rh_zo(fovy, aspect, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_perspective_rh_no(fovy, aspect, nearZ, farZ, dest);
#endif
}
/*!
* @brief extend perspective projection matrix's far distance
*
* this function does not guarantee far >= near, be aware of that!
*
* @param[in, out] proj projection matrix to extend
* @param[in] deltaFar distance from existing far (negative to shink)
*/
f_inline
void
glm_persp_move_far(mat4 proj, float deltaFar) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_move_far_lh_zo(proj, deltaFar);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_move_far_lh_no(proj, deltaFar);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_move_far_rh_zo(proj, deltaFar);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_move_far_rh_no(proj, deltaFar);
#endif
}
/*!
* @brief set up perspective projection matrix with default near/far
* and angle values
*
* @param[in] aspect aspect ratio ( width / height )
* @param[out] dest result matrix
*/
f_inline
void
glm_perspective_default(float aspect, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_perspective_default_lh_zo(aspect, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_perspective_default_lh_no(aspect, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_perspective_default_rh_zo(aspect, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_perspective_default_rh_no(aspect, dest);
#endif
}
/*!
* @brief resize perspective matrix by aspect ratio ( width / height )
* this makes very easy to resize proj matrix when window /viewport
* reized
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in, out] proj perspective projection matrix
*/
f_inline
void
glm_perspective_resize(float aspect, mat4 proj) {
if (proj[0][0] == 0.0f)
return;
proj[0][0] = proj[1][1] / aspect;
}
/*!
* @brief set up view matrix
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] center center vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
f_inline
void
glm_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_LH_BIT
glm_lookat_lh(eye, center, up, dest);
#elif CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_RH_BIT
glm_lookat_rh(eye, center, up, dest);
#endif
}
/*!
* @brief set up view matrix
*
* convenient wrapper for lookat: if you only have direction not target self
* then this might be useful. Because you need to get target from direction.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
f_inline
void
glm_look(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_LH_BIT
glm_look_lh(eye, dir, up, dest);
#elif CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_RH_BIT
glm_look_rh(eye, dir, up, dest);
#endif
}
/*!
* @brief set up view matrix
*
* convenient wrapper for look: if you only have direction and if you don't
* care what UP vector is then this might be useful to create view matrix
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[out] dest result matrix
*/
f_inline
void
glm_look_anyup(vec3 eye, vec3 dir, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_LH_BIT
glm_look_anyup_lh(eye, dir, dest);
#elif CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_RH_BIT
glm_look_anyup_rh(eye, dir, dest);
#endif
}
/*!
* @brief decomposes frustum values of perspective projection.
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
* @param[out] top top
* @param[out] bottom bottom
* @param[out] left left
* @param[out] right right
*/
f_inline
void
glm_persp_decomp(mat4 proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_decomp_lh_zo(proj, nearZ, farZ, top, bottom, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_decomp_lh_no(proj, nearZ, farZ, top, bottom, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_decomp_rh_zo(proj, nearZ, farZ, top, bottom, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_decomp_rh_no(proj, nearZ, farZ, top, bottom, left, right);
#endif
}
/*!
* @brief decomposes frustum values of perspective projection.
* this makes easy to get all values at once
*
* @param[in] proj perspective projection matrix
* @param[out] dest array
*/
f_inline
void
glm_persp_decompv(mat4 proj, float dest[6]) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_decompv_lh_zo(proj, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_decompv_lh_no(proj, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_decompv_rh_zo(proj, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_decompv_rh_no(proj, dest);
#endif
}
/*!
* @brief decomposes left and right values of perspective projection.
* x stands for x axis (left / right axis)
*
* @param[in] proj perspective projection matrix
* @param[out] left left
* @param[out] right right
*/
f_inline
void
glm_persp_decomp_x(mat4 proj,
float * __restrict left,
float * __restrict right) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_decomp_x_lh_zo(proj, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_decomp_x_lh_no(proj, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_decomp_x_rh_zo(proj, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_decomp_x_rh_no(proj, left, right);
#endif
}
/*!
* @brief decomposes top and bottom values of perspective projection.
* y stands for y axis (top / botom axis)
*
* @param[in] proj perspective projection matrix
* @param[out] top top
* @param[out] bottom bottom
*/
f_inline
void
glm_persp_decomp_y(mat4 proj,
float * __restrict top,
float * __restrict bottom) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_decomp_y_lh_zo(proj, top, bottom);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_decomp_y_lh_no(proj, top, bottom);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_decomp_y_rh_zo(proj, top, bottom);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_decomp_y_rh_no(proj, top, bottom);
#endif
}
/*!
* @brief decomposes near and far values of perspective projection.
* z stands for z axis (near / far axis)
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
*/
f_inline
void
glm_persp_decomp_z(mat4 proj, float * __restrict nearZ, float * __restrict farZ) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_decomp_z_lh_zo(proj, nearZ, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_decomp_z_lh_no(proj, nearZ, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_decomp_z_rh_zo(proj, nearZ, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_decomp_z_rh_no(proj, nearZ, farZ);
#endif
}
/*!
* @brief decomposes far value of perspective projection.
*
* @param[in] proj perspective projection matrix
* @param[out] farZ far
*/
f_inline
void
glm_persp_decomp_far(mat4 proj, float * __restrict farZ) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_decomp_far_lh_zo(proj, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_decomp_far_lh_no(proj, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_decomp_far_rh_zo(proj, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_decomp_far_rh_no(proj, farZ);
#endif
}
/*!
* @brief decomposes near value of perspective projection.
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
*/
f_inline
void
glm_persp_decomp_near(mat4 proj, float * __restrict nearZ) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_decomp_near_lh_zo(proj, nearZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_decomp_near_lh_no(proj, nearZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_decomp_near_rh_zo(proj, nearZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_decomp_near_rh_no(proj, nearZ);
#endif
}
/*!
* @brief returns sizes of near and far planes of perspective projection
*
* @param[in] proj perspective projection matrix
* @param[in] fovy fovy (see brief)
* @param[out] dest sizes order: [Wnear, Hnear, Wfar, Hfar]
*/
f_inline
void
glm_persp_sizes(mat4 proj, float fovy, vec4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_sizes_lh_zo(proj, fovy, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_sizes_lh_no(proj, fovy, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_sizes_rh_zo(proj, fovy, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_sizes_rh_no(proj, fovy, dest);
#endif
}
#define GLM_LBN 0 /* left bottom near */
#define GLM_LTN 1 /* left top near */
#define GLM_RTN 2 /* right top near */
#define GLM_RBN 3 /* right bottom near */
#define GLM_LBF 4 /* left bottom far */
#define GLM_LTF 5 /* left top far */
#define GLM_RTF 6 /* right top far */
#define GLM_RBF 7 /* right bottom far */
#define GLM_LEFT 0
#define GLM_RIGHT 1
#define GLM_BOTTOM 2
#define GLM_TOP 3
#define GLM_NEAR 4
#define GLM_FAR 5
/* you can override clip space coords
but you have to provide all with same name
e.g.: define GLM_CSCOORD_LBN {0.0f, 0.0f, 1.0f, 1.0f} */
#ifndef GLM_CUSTOM_CLIPSPACE
/* near */
#define GLM_CSCOORD_LBN {-1.0f, -1.0f, -1.0f, 1.0f}
#define GLM_CSCOORD_LTN {-1.0f, 1.0f, -1.0f, 1.0f}
#define GLM_CSCOORD_RTN { 1.0f, 1.0f, -1.0f, 1.0f}
#define GLM_CSCOORD_RBN { 1.0f, -1.0f, -1.0f, 1.0f}
/* far */
#define GLM_CSCOORD_LBF {-1.0f, -1.0f, 1.0f, 1.0f}
#define GLM_CSCOORD_LTF {-1.0f, 1.0f, 1.0f, 1.0f}
#define GLM_CSCOORD_RTF { 1.0f, 1.0f, 1.0f, 1.0f}
#define GLM_CSCOORD_RBF { 1.0f, -1.0f, 1.0f, 1.0f}
#endif
/*!
* @brief extracts view frustum planes
*
* planes' space:
* 1- if m = proj: View Space
* 2- if m = viewProj: World Space
* 3- if m = MVP: Object Space
*
* You probably want to extract planes in world space so use viewProj as m
* Computing viewProj:
* glm_mat4_mul(proj, view, viewProj);
*
* Exracted planes order: [left, right, bottom, top, near, far]
*
* @param[in] m matrix (see brief)
* @param[out] dest extracted view frustum planes (see brief)
*/
f_inline
void
glm_frustum_planes(mat4 m, vec4 dest[6]) {
mat4 t;
glm_mat4_transpose_to(m, t);
glm_vec4_add(t[3], t[0], dest[0]); /* left */
glm_vec4_sub(t[3], t[0], dest[1]); /* right */
glm_vec4_add(t[3], t[1], dest[2]); /* bottom */
glm_vec4_sub(t[3], t[1], dest[3]); /* top */
glm_vec4_add(t[3], t[2], dest[4]); /* near */
glm_vec4_sub(t[3], t[2], dest[5]); /* far */
glm_plane_normalize(dest[0]);
glm_plane_normalize(dest[1]);
glm_plane_normalize(dest[2]);
glm_plane_normalize(dest[3]);
glm_plane_normalize(dest[4]);
glm_plane_normalize(dest[5]);
}
/*!
* @brief extracts view frustum corners using clip-space coordinates
*
* corners' space:
* 1- if m = invViewProj: World Space
* 2- if m = invMVP: Object Space
*
* You probably want to extract corners in world space so use invViewProj
* Computing invViewProj:
* glm_mat4_mul(proj, view, viewProj);
* ...
* glm_mat4_inv(viewProj, invViewProj);
*
* if you have a near coord at i index, you can get it's far coord by i + 4
*
* Find center coordinates:
* for (j = 0; j < 4; j++) {
* glm_vec3_center(corners[i], corners[i + 4], centerCorners[i]);
* }
*
* @param[in] invMat matrix (see brief)
* @param[out] dest exracted view frustum corners (see brief)
*/
f_inline
void
glm_frustum_corners(mat4 invMat, vec4 dest[8]) {
vec4 c[8];
/* indexOf(nearCoord) = indexOf(farCoord) + 4 */
vec4 csCoords[8] = {
GLM_CSCOORD_LBN,
GLM_CSCOORD_LTN,
GLM_CSCOORD_RTN,
GLM_CSCOORD_RBN,
GLM_CSCOORD_LBF,
GLM_CSCOORD_LTF,
GLM_CSCOORD_RTF,
GLM_CSCOORD_RBF
};
glm_mat4_mulv(invMat, csCoords[0], c[0]);
glm_mat4_mulv(invMat, csCoords[1], c[1]);
glm_mat4_mulv(invMat, csCoords[2], c[2]);
glm_mat4_mulv(invMat, csCoords[3], c[3]);
glm_mat4_mulv(invMat, csCoords[4], c[4]);
glm_mat4_mulv(invMat, csCoords[5], c[5]);
glm_mat4_mulv(invMat, csCoords[6], c[6]);
glm_mat4_mulv(invMat, csCoords[7], c[7]);
glm_vec4_scale(c[0], 1.0f / c[0][3], dest[0]);
glm_vec4_scale(c[1], 1.0f / c[1][3], dest[1]);
glm_vec4_scale(c[2], 1.0f / c[2][3], dest[2]);
glm_vec4_scale(c[3], 1.0f / c[3][3], dest[3]);
glm_vec4_scale(c[4], 1.0f / c[4][3], dest[4]);
glm_vec4_scale(c[5], 1.0f / c[5][3], dest[5]);
glm_vec4_scale(c[6], 1.0f / c[6][3], dest[6]);
glm_vec4_scale(c[7], 1.0f / c[7][3], dest[7]);
}
/*!
* @brief finds center of view frustum
*
* @param[in] corners view frustum corners
* @param[out] dest view frustum center
*/
f_inline
void
glm_frustum_center(vec4 corners[8], vec4 dest) {
vec4 center;
glm_vec4_copy(corners[0], center);
glm_vec4_add(corners[1], center, center);
glm_vec4_add(corners[2], center, center);
glm_vec4_add(corners[3], center, center);
glm_vec4_add(corners[4], center, center);
glm_vec4_add(corners[5], center, center);
glm_vec4_add(corners[6], center, center);
glm_vec4_add(corners[7], center, center);
glm_vec4_scale(center, 0.125f, dest);
}
/*!
* @brief finds bounding box of frustum relative to given matrix e.g. view mat
*
* @param[in] corners view frustum corners
* @param[in] m matrix to convert existing conners
* @param[out] box bounding box as array [min, max]
*/
f_inline
void
glm_frustum_box(vec4 corners[8], mat4 m, vec3 box[2]) {
vec4 v;
vec3 min, max;
int i;
glm_vec3_broadcast(FLT_MAX, min);
glm_vec3_broadcast(-FLT_MAX, max);
for (i = 0; i < 8; i++) {
glm_mat4_mulv(m, corners[i], v);
min[0] = glm_min(min[0], v[0]);
min[1] = glm_min(min[1], v[1]);
min[2] = glm_min(min[2], v[2]);
max[0] = glm_max(max[0], v[0]);
max[1] = glm_max(max[1], v[1]);
max[2] = glm_max(max[2], v[2]);
}
glm_vec3_copy(min, box[0]);
glm_vec3_copy(max, box[1]);
}
/*!
* @brief finds planes corners which is between near and far planes (parallel)
*
* this will be helpful if you want to split a frustum e.g. CSM/PSSM. This will
* find planes' corners but you will need to one more plane.
* Actually you have it, it is near, far or created previously with this func ;)
*
* @param[in] corners view frustum corners
* @param[in] splitDist split distance
* @param[in] farDist far distance (zFar)
* @param[out] planeCorners plane corners [LB, LT, RT, RB]
*/
f_inline
void
glm_frustum_corners_at(vec4 corners[8],
float splitDist,
float farDist,
vec4 planeCorners[4]) {
vec4 corner;
float dist, sc;
/* because distance and scale is same for all */
dist = glm_vec3_distance(corners[GLM_RTF], corners[GLM_RTN]);
sc = dist * (splitDist / farDist);
/* left bottom */
glm_vec4_sub(corners[GLM_LBF], corners[GLM_LBN], corner);
glm_vec4_scale_as(corner, sc, corner);
glm_vec4_add(corners[GLM_LBN], corner, planeCorners[0]);
/* left top */
glm_vec4_sub(corners[GLM_LTF], corners[GLM_LTN], corner);
glm_vec4_scale_as(corner, sc, corner);
glm_vec4_add(corners[GLM_LTN], corner, planeCorners[1]);
/* right top */
glm_vec4_sub(corners[GLM_RTF], corners[GLM_RTN], corner);
glm_vec4_scale_as(corner, sc, corner);
glm_vec4_add(corners[GLM_RTN], corner, planeCorners[2]);
/* right bottom */
glm_vec4_sub(corners[GLM_RBF], corners[GLM_RBN], corner);
glm_vec4_scale_as(corner, sc, corner);
glm_vec4_add(corners[GLM_RBN], corner, planeCorners[3]);
}
#ifdef CGLM_SIMD
#if defined( __SSE__ ) || defined( __SSE2__ )
f_inline
void
glm_quat_mul_sse2(vec4 p, vec4 q, vec4 dest) {
/*
+ (a1 b2 + b1 a2 + c1 d2 d1 c2)i
+ (a1 c2 b1 d2 + c1 a2 + d1 b2)j
+ (a1 d2 + b1 c2 c1 b2 + d1 a2)k
a1 a2 b1 b2 c1 c2 d1 d2
*/
__m128 xp, xq, x1, x2, x3, r, x, y, z;
xp = glmm_load(p); /* 3 2 1 0 */
xq = glmm_load(q);
x1 = _mm_set_ps(-0.f, 0.f, -0.f, 0.f); /* TODO: _mm_set1_ss() + shuff ? */
r = _mm_mul_ps(glmm_splat_w(xp), xq);
x2 = _mm_unpackhi_ps(x1, x1);
x3 = glmm_shuff1(x1, 3, 2, 0, 1);
x = glmm_splat_x(xp);
y = glmm_splat_y(xp);
z = glmm_splat_z(xp);
x = _mm_xor_ps(x, x1);
y = _mm_xor_ps(y, x2);
z = _mm_xor_ps(z, x3);
x1 = glmm_shuff1(xq, 0, 1, 2, 3);
x2 = glmm_shuff1(xq, 1, 0, 3, 2);
x3 = glmm_shuff1(xq, 2, 3, 0, 1);
r = glmm_fmadd(x, x1, r);
r = glmm_fmadd(y, x2, r);
r = glmm_fmadd(z, x3, r);
glmm_store(dest, r);
}
#endif
#endif
f_inline void glm_quat_normalize(vec4 q);
/*
* IMPORTANT:
* ----------------------------------------------------------------------------
* cglm stores quat as [x, y, z, w] since v0.3.6
*
* it was [w, x, y, z] before v0.3.6 it has been changed to [x, y, z, w]
* with v0.3.6 version.
* ----------------------------------------------------------------------------
*/
#define GLM_QUAT_IDENTITY_INIT {0.0f, 0.0f, 0.0f, 1.0f}
#define GLM_QUAT_IDENTITY ((vec4)GLM_QUAT_IDENTITY_INIT)
/*!
* @brief makes given quat to identity
*
* @param[in, out] q quaternion
*/
f_inline
void
glm_quat_identity(vec4 q) {
f_align(16) vec4 v = GLM_QUAT_IDENTITY_INIT;
glm_vec4_copy(v, q);
}
/*!
* @brief make given quaternion array's each element identity quaternion
*
* @param[in, out] q quat array (must be aligned (16)
* if alignment is not disabled)
*
* @param[in] count count of quaternions
*/
f_inline
void
glm_quat_identity_array(vec4 * __restrict q, uint count) {
f_align(16) vec4 v = GLM_QUAT_IDENTITY_INIT;
uint i;
for (i = 0; i < count; i++) {
glm_vec4_copy(v, q[i]);
}
}
/*!
* @brief inits quaterion with raw values
*
* @param[out] q quaternion
* @param[in] x x
* @param[in] y y
* @param[in] z z
* @param[in] w w (real part)
*/
f_inline
void
glm_quat_init(vec4 q, float x, float y, float z, float w) {
q[0] = x;
q[1] = y;
q[2] = z;
q[3] = w;
}
/*!
* @brief creates NEW quaternion with axis vector
*
* @param[out] q quaternion
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
f_inline
void
glm_quatv(vec4 q, float angle, vec3 axis) {
f_align(8) vec3 k;
float a, c, s;
a = angle * 0.5f;
c = cosf(a);
s = sinf(a);
glm_normalize_to(axis, k);
q[0] = s * k[0];
q[1] = s * k[1];
q[2] = s * k[2];
q[3] = c;
}
/*!
* @brief creates NEW quaternion with individual axis components
*
* @param[out] q quaternion
* @param[in] angle angle (radians)
* @param[in] x axis.x
* @param[in] y axis.y
* @param[in] z axis.z
*/
f_inline
void
glm_quat(vec4 q, float angle, float x, float y, float z) {
f_align(8) vec3 axis = {x, y, z};
glm_quatv(q, angle, axis);
}
/*!
* @brief copy quaternion to another one
*
* @param[in] q quaternion
* @param[out] dest destination
*/
f_inline
void
glm_quat_copy(vec4 q, vec4 dest) {
glm_vec4_copy(q, dest);
}
/*!
* @brief compute quaternion rotating vector A to vector B
*
* @param[in] a vec3 (must have unit length)
* @param[in] b vec3 (must have unit length)
* @param[out] dest quaternion (of unit length)
*/
f_inline
void
glm_quat_from_vecs(vec3 a, vec3 b, vec4 dest) {
f_align(8) vec3 axis;
float cos_theta;
float cos_half_theta;
cos_theta = glm_vec3_dot(a, b);
if (cos_theta >= 1.f - GLM_FLT_EPSILON) { /* a ∥ b */
glm_quat_identity(dest);
return;
}
if (cos_theta < -1.f + GLM_FLT_EPSILON) { /* angle(a, b) = π */
glm_vec3_ortho(a, axis);
cos_half_theta = 0.f; /* cos π/2 */
} else {
glm_vec3_cross(a, b, axis);
cos_half_theta = 1.0f + cos_theta; /* cos 0 + cos θ */
}
glm_quat_init(dest, axis[0], axis[1], axis[2], cos_half_theta);
glm_quat_normalize(dest);
}
/*!
* @brief returns norm (magnitude) of quaternion
*
* @param[in] q quaternion
*/
f_inline
float
glm_quat_norm(vec4 q) {
return glm_vec4_norm(q);
}
/*!
* @brief normalize quaternion and store result in dest
*
* @param[in] q quaternion to normalze
* @param[out] dest destination quaternion
*/
f_inline
void
glm_quat_normalize_to(vec4 q, vec4 dest) {
#if defined( __SSE2__ ) || defined( __SSE2__ )
__m128 xdot, x0;
float dot;
x0 = glmm_load(q);
xdot = glmm_vdot(x0, x0);
dot = _mm_cvtss_f32(xdot);
if (dot <= 0.0f) {
glm_quat_identity(dest);
return;
}
glmm_store(dest, _mm_div_ps(x0, _mm_sqrt_ps(xdot)));
#else
float dot;
dot = glm_vec4_norm2(q);
if (dot <= 0.0f) {
glm_quat_identity(dest);
return;
}
glm_vec4_scale(q, 1.0f / sqrtf(dot), dest);
#endif
}
/*!
* @brief normalize quaternion
*
* @param[in, out] q quaternion
*/
f_inline
void
glm_quat_normalize(vec4 q) {
glm_quat_normalize_to(q, q);
}
/*!
* @brief dot product of two quaternion
*
* @param[in] p quaternion 1
* @param[in] q quaternion 2
*/
f_inline
float
glm_quat_dot(vec4 p, vec4 q) {
return glm_vec4_dot(p, q);
}
/*!
* @brief conjugate of quaternion
*
* @param[in] q quaternion
* @param[out] dest conjugate
*/
f_inline
void
glm_quat_conjugate(vec4 q, vec4 dest) {
glm_vec4_negate_to(q, dest);
dest[3] = -dest[3];
}
/*!
* @brief inverse of non-zero quaternion
*
* @param[in] q quaternion
* @param[out] dest inverse quaternion
*/
f_inline
void
glm_quat_inv(vec4 q, vec4 dest) {
f_align(16) vec4 conj;
glm_quat_conjugate(q, conj);
glm_vec4_scale(conj, 1.0f / glm_vec4_norm2(q), dest);
}
/*!
* @brief add (componentwise) two quaternions and store result in dest
*
* @param[in] p quaternion 1
* @param[in] q quaternion 2
* @param[out] dest result quaternion
*/
f_inline
void
glm_quat_add(vec4 p, vec4 q, vec4 dest) {
glm_vec4_add(p, q, dest);
}
/*!
* @brief subtract (componentwise) two quaternions and store result in dest
*
* @param[in] p quaternion 1
* @param[in] q quaternion 2
* @param[out] dest result quaternion
*/
f_inline
void
glm_quat_sub(vec4 p, vec4 q, vec4 dest) {
glm_vec4_sub(p, q, dest);
}
/*!
* @brief returns real part of quaternion
*
* @param[in] q quaternion
*/
f_inline
float
glm_quat_real(vec4 q) {
return q[3];
}
/*!
* @brief returns imaginary part of quaternion
*
* @param[in] q quaternion
* @param[out] dest imag
*/
f_inline
void
glm_quat_imag(vec4 q, vec3 dest) {
dest[0] = q[0];
dest[1] = q[1];
dest[2] = q[2];
}
/*!
* @brief returns normalized imaginary part of quaternion
*
* @param[in] q quaternion
*/
f_inline
void
glm_quat_imagn(vec4 q, vec3 dest) {
glm_normalize_to(q, dest);
}
/*!
* @brief returns length of imaginary part of quaternion
*
* @param[in] q quaternion
*/
f_inline
float
glm_quat_imaglen(vec4 q) {
return glm_vec3_norm(q);
}
/*!
* @brief returns angle of quaternion
*
* @param[in] q quaternion
*/
f_inline
float
glm_quat_angle(vec4 q) {
/*
sin(theta / 2) = length(x*x + y*y + z*z)
cos(theta / 2) = w
theta = 2 * atan(sin(theta / 2) / cos(theta / 2))
*/
return 2.0f * atan2f(glm_quat_imaglen(q), glm_quat_real(q));
}
/*!
* @brief axis of quaternion
*
* @param[in] q quaternion
* @param[out] dest axis of quaternion
*/
f_inline
void
glm_quat_axis(vec4 q, vec3 dest) {
glm_quat_imagn(q, dest);
}
/*!
* @brief multiplies two quaternion and stores result in dest
* this is also called Hamilton Product
*
* According to WikiPedia:
* The product of two rotation quaternions [clarification needed] will be
* equivalent to the rotation q followed by the rotation p
*
* @param[in] p quaternion 1
* @param[in] q quaternion 2
* @param[out] dest result quaternion
*/
f_inline
void
glm_quat_mul(vec4 p, vec4 q, vec4 dest) {
/*
+ (a1 b2 + b1 a2 + c1 d2 d1 c2)i
+ (a1 c2 b1 d2 + c1 a2 + d1 b2)j
+ (a1 d2 + b1 c2 c1 b2 + d1 a2)k
a1 a2 b1 b2 c1 c2 d1 d2
*/
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_quat_mul_sse2(p, q, dest);
#elif defined(CGLM_NEON_FP)
glm_quat_mul_neon(p, q, dest);
#else
dest[0] = p[3] * q[0] + p[0] * q[3] + p[1] * q[2] - p[2] * q[1];
dest[1] = p[3] * q[1] - p[0] * q[2] + p[1] * q[3] + p[2] * q[0];
dest[2] = p[3] * q[2] + p[0] * q[1] - p[1] * q[0] + p[2] * q[3];
dest[3] = p[3] * q[3] - p[0] * q[0] - p[1] * q[1] - p[2] * q[2];
#endif
}
/*!
* @brief convert quaternion to mat4
*
* @param[in] q quaternion
* @param[out] dest result matrix
*/
f_inline
void
glm_quat_mat4(vec4 q, mat4 dest) {
float w, x, y, z,
xx, yy, zz,
xy, yz, xz,
wx, wy, wz, norm, s;
norm = glm_quat_norm(q);
s = norm > 0.0f ? 2.0f / norm : 0.0f;
x = q[0];
y = q[1];
z = q[2];
w = q[3];
xx = s * x * x; xy = s * x * y; wx = s * w * x;
yy = s * y * y; yz = s * y * z; wy = s * w * y;
zz = s * z * z; xz = s * x * z; wz = s * w * z;
dest[0][0] = 1.0f - yy - zz;
dest[1][1] = 1.0f - xx - zz;
dest[2][2] = 1.0f - xx - yy;
dest[0][1] = xy + wz;
dest[1][2] = yz + wx;
dest[2][0] = xz + wy;
dest[1][0] = xy - wz;
dest[2][1] = yz - wx;
dest[0][2] = xz - wy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief convert quaternion to mat4 (transposed)
*
* @param[in] q quaternion
* @param[out] dest result matrix as transposed
*/
f_inline
void
glm_quat_mat4t(vec4 q, mat4 dest) {
float w, x, y, z,
xx, yy, zz,
xy, yz, xz,
wx, wy, wz, norm, s;
norm = glm_quat_norm(q);
s = norm > 0.0f ? 2.0f / norm : 0.0f;
x = q[0];
y = q[1];
z = q[2];
w = q[3];
xx = s * x * x; xy = s * x * y; wx = s * w * x;
yy = s * y * y; yz = s * y * z; wy = s * w * y;
zz = s * z * z; xz = s * x * z; wz = s * w * z;
dest[0][0] = 1.0f - yy - zz;
dest[1][1] = 1.0f - xx - zz;
dest[2][2] = 1.0f - xx - yy;
dest[1][0] = xy + wz;
dest[2][1] = yz + wx;
dest[0][2] = xz + wy;
dest[0][1] = xy - wz;
dest[1][2] = yz - wx;
dest[2][0] = xz - wy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief convert quaternion to mat3
*
* @param[in] q quaternion
* @param[out] dest result matrix
*/
f_inline
void
glm_quat_mat3(vec4 q, mat3 dest) {
float w, x, y, z,
xx, yy, zz,
xy, yz, xz,
wx, wy, wz, norm, s;
norm = glm_quat_norm(q);
s = norm > 0.0f ? 2.0f / norm : 0.0f;
x = q[0];
y = q[1];
z = q[2];
w = q[3];
xx = s * x * x; xy = s * x * y; wx = s * w * x;
yy = s * y * y; yz = s * y * z; wy = s * w * y;
zz = s * z * z; xz = s * x * z; wz = s * w * z;
dest[0][0] = 1.0f - yy - zz;
dest[1][1] = 1.0f - xx - zz;
dest[2][2] = 1.0f - xx - yy;
dest[0][1] = xy + wz;
dest[1][2] = yz + wx;
dest[2][0] = xz + wy;
dest[1][0] = xy - wz;
dest[2][1] = yz - wx;
dest[0][2] = xz - wy;
}
/*!
* @brief convert quaternion to mat3 (transposed)
*
* @param[in] q quaternion
* @param[out] dest result matrix
*/
f_inline
void
glm_quat_mat3t(vec4 q, mat3 dest) {
float w, x, y, z,
xx, yy, zz,
xy, yz, xz,
wx, wy, wz, norm, s;
norm = glm_quat_norm(q);
s = norm > 0.0f ? 2.0f / norm : 0.0f;
x = q[0];
y = q[1];
z = q[2];
w = q[3];
xx = s * x * x; xy = s * x * y; wx = s * w * x;
yy = s * y * y; yz = s * y * z; wy = s * w * y;
zz = s * z * z; xz = s * x * z; wz = s * w * z;
dest[0][0] = 1.0f - yy - zz;
dest[1][1] = 1.0f - xx - zz;
dest[2][2] = 1.0f - xx - yy;
dest[1][0] = xy + wz;
dest[2][1] = yz + wx;
dest[0][2] = xz + wy;
dest[0][1] = xy - wz;
dest[1][2] = yz - wx;
dest[2][0] = xz - wy;
}
/*!
* @brief interpolates between two quaternions
* using linear interpolation (LERP)
*
* @param[in] from from
* @param[in] to to
* @param[in] t interpolant (amount)
* @param[out] dest result quaternion
*/
f_inline
void
glm_quat_lerp(vec4 from, vec4 to, float t, vec4 dest) {
glm_vec4_lerp(from, to, t, dest);
}
/*!
* @brief interpolates between two quaternions
* using linear interpolation (LERP)
*
* @param[in] from from
* @param[in] to to
* @param[in] t interpolant (amount) clamped between 0 and 1
* @param[out] dest result quaternion
*/
f_inline
void
glm_quat_lerpc(vec4 from, vec4 to, float t, vec4 dest) {
glm_vec4_lerpc(from, to, t, dest);
}
/*!
* @brief interpolates between two quaternions
* taking the shortest rotation path using
* normalized linear interpolation (NLERP)
*
* @param[in] from from
* @param[in] to to
* @param[in] t interpolant (amount)
* @param[out] dest result quaternion
*/
f_inline
void
glm_quat_nlerp(vec4 from, vec4 to, float t, vec4 dest) {
vec4 target;
float dot;
dot = glm_vec4_dot(from, to);
glm_vec4_scale(to, (dot >= 0) ? 1.0f : -1.0f, target);
glm_quat_lerp(from, target, t, dest);
glm_quat_normalize(dest);
}
/*!
* @brief interpolates between two quaternions
* using spherical linear interpolation (SLERP)
*
* @param[in] from from
* @param[in] to to
* @param[in] t amout
* @param[out] dest result quaternion
*/
f_inline
void
glm_quat_slerp(vec4 from, vec4 to, float t, vec4 dest) {
f_align(16) vec4 q1, q2;
float cosTheta, sinTheta, angle;
cosTheta = glm_quat_dot(from, to);
glm_quat_copy(from, q1);
if (fabsf(cosTheta) >= 1.0f) {
glm_quat_copy(q1, dest);
return;
}
if (cosTheta < 0.0f) {
glm_vec4_negate(q1);
cosTheta = -cosTheta;
}
sinTheta = sqrtf(1.0f - cosTheta * cosTheta);
/* LERP to avoid zero division */
if (fabsf(sinTheta) < 0.001f) {
glm_quat_lerp(from, to, t, dest);
return;
}
/* SLERP */
angle = acosf(cosTheta);
glm_vec4_scale(q1, sinf((1.0f - t) * angle), q1);
glm_vec4_scale(to, sinf(t * angle), q2);
glm_vec4_add(q1, q2, q1);
glm_vec4_scale(q1, 1.0f / sinTheta, dest);
}
/*!
* @brief creates view matrix using quaternion as camera orientation
*
* @param[in] eye eye
* @param[in] ori orientation in world space as quaternion
* @param[out] dest view matrix
*/
f_inline
void
glm_quat_look(vec3 eye, vec4 ori, mat4 dest) {
/* orientation */
glm_quat_mat4t(ori, dest);
/* translate */
glm_mat4_mulv3(dest, eye, 1.0f, dest[3]);
glm_vec3_negate(dest[3]);
}
/*!
* @brief creates look rotation quaternion
*
* @param[in] dir direction to look
* @param[in] up up vector
* @param[out] dest destination quaternion
*/
f_inline
void
glm_quat_for(vec3 dir, vec3 up, vec4 dest) {
f_align(16) mat3 m;
glm_vec3_normalize_to(dir, m[2]);
/* No need to negate in LH, but we use RH here */
glm_vec3_negate(m[2]);
glm_vec3_crossn(up, m[2], m[0]);
glm_vec3_cross(m[2], m[0], m[1]);
glm_mat3_quat(m, dest);
}
/*!
* @brief creates look rotation quaternion using source and
* destination positions p suffix stands for position
*
* @param[in] from source point
* @param[in] to destination point
* @param[in] up up vector
* @param[out] dest destination quaternion
*/
f_inline
void
glm_quat_forp(vec3 from, vec3 to, vec3 up, vec4 dest) {
f_align(8) vec3 dir;
glm_vec3_sub(to, from, dir);
glm_quat_for(dir, up, dest);
}
/*!
* @brief rotate vector using using quaternion
*
* @param[in] q quaternion
* @param[in] v vector to rotate
* @param[out] dest rotated vector
*/
f_inline
void
glm_quat_rotatev(vec4 q, vec3 v, vec3 dest) {
f_align(16) vec4 p;
f_align(8) vec3 u, v1, v2;
float s;
glm_quat_normalize_to(q, p);
glm_quat_imag(p, u);
s = glm_quat_real(p);
glm_vec3_scale(u, 2.0f * glm_vec3_dot(u, v), v1);
glm_vec3_scale(v, s * s - glm_vec3_dot(u, u), v2);
glm_vec3_add(v1, v2, v1);
glm_vec3_cross(u, v, v2);
glm_vec3_scale(v2, 2.0f * s, v2);
glm_vec3_add(v1, v2, dest);
}
/*!
* @brief rotate existing transform matrix using quaternion
*
* @param[in] m existing transform matrix
* @param[in] q quaternion
* @param[out] dest rotated matrix/transform
*/
f_inline
void
glm_quat_rotate(mat4 m, vec4 q, mat4 dest) {
f_align(16) mat4 rot;
glm_quat_mat4(q, rot);
glm_mul_rot(m, rot, dest);
}
/*!
* @brief rotate existing transform matrix using quaternion at pivot point
*
* @param[in, out] m existing transform matrix
* @param[in] q quaternion
* @param[out] pivot pivot
*/
f_inline
void
glm_quat_rotate_at(mat4 m, vec4 q, vec3 pivot) {
f_align(8) vec3 pivotInv;
glm_vec3_negate_to(pivot, pivotInv);
glm_translate(m, pivot);
glm_quat_rotate(m, q, m);
glm_translate(m, pivotInv);
}
/*!
* @brief rotate NEW transform matrix using quaternion at pivot point
*
* this creates rotation matrix, it assumes you don't have a matrix
*
* this should work faster than glm_quat_rotate_at because it reduces
* one glm_translate.
*
* @param[out] m existing transform matrix
* @param[in] q quaternion
* @param[in] pivot pivot
*/
f_inline
void
glm_quat_rotate_atm(mat4 m, vec4 q, vec3 pivot) {
f_align(8) vec3 pivotInv;
glm_vec3_negate_to(pivot, pivotInv);
glm_translate_make(m, pivot);
glm_quat_rotate(m, q, m);
glm_translate(m, pivotInv);
}
/*!
* if you have axis order like vec3 orderVec = [0, 1, 2] or [0, 2, 1]...
* vector then you can convert it to this enum by doing this:
* @code
* glm_euler_seq order;
* order = orderVec[0] | orderVec[1] << 2 | orderVec[2] << 4;
* @endcode
* you may need to explicit cast if required
*/
typedef enum glm_euler_seq {
GLM_EULER_XYZ = 0 << 0 | 1 << 2 | 2 << 4,
GLM_EULER_XZY = 0 << 0 | 2 << 2 | 1 << 4,
GLM_EULER_YZX = 1 << 0 | 2 << 2 | 0 << 4,
GLM_EULER_YXZ = 1 << 0 | 0 << 2 | 2 << 4,
GLM_EULER_ZXY = 2 << 0 | 0 << 2 | 1 << 4,
GLM_EULER_ZYX = 2 << 0 | 1 << 2 | 0 << 4
} glm_euler_seq;
f_inline
glm_euler_seq
glm_euler_order(int ord[3]) {
return (glm_euler_seq)(ord[0] << 0 | ord[1] << 2 | ord[2] << 4);
}
/*!
* @brief extract euler angles (in radians) using xyz order
*
* @param[in] m affine transform
* @param[out] dest angles vector [x, y, z]
*/
f_inline
void
glm_euler_angles(mat4 m, vec3 dest) {
float m00, m01, m10, m11, m20, m21, m22;
float thetaX, thetaY, thetaZ;
m00 = m[0][0]; m10 = m[1][0]; m20 = m[2][0];
m01 = m[0][1]; m11 = m[1][1]; m21 = m[2][1];
m22 = m[2][2];
if (m20 < 1.0f) {
if (m20 > -1.0f) {
thetaY = asinf(m20);
thetaX = atan2f(-m21, m22);
thetaZ = atan2f(-m10, m00);
} else { /* m20 == -1 */
/* Not a unique solution */
thetaY = -GLM_PI_2f;
thetaX = -atan2f(m01, m11);
thetaZ = 0.0f;
}
} else { /* m20 == +1 */
thetaY = GLM_PI_2f;
thetaX = atan2f(m01, m11);
thetaZ = 0.0f;
}
dest[0] = thetaX;
dest[1] = thetaY;
dest[2] = thetaZ;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
f_inline
void
glm_euler_xyz(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz, czsx, cxcz, sysz;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
czsx = cz * sx;
cxcz = cx * cz;
sysz = sy * sz;
dest[0][0] = cy * cz;
dest[0][1] = czsx * sy + cx * sz;
dest[0][2] = -cxcz * sy + sx * sz;
dest[1][0] = -cy * sz;
dest[1][1] = cxcz - sx * sysz;
dest[1][2] = czsx + cx * sysz;
dest[2][0] = sy;
dest[2][1] = -cy * sx;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
f_inline
void
glm_euler(vec3 angles, mat4 dest) {
glm_euler_xyz(angles, dest);
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
f_inline
void
glm_euler_xzy(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz, sxsy, cysx, cxsy, cxcy;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
sxsy = sx * sy;
cysx = cy * sx;
cxsy = cx * sy;
cxcy = cx * cy;
dest[0][0] = cy * cz;
dest[0][1] = sxsy + cxcy * sz;
dest[0][2] = -cxsy + cysx * sz;
dest[1][0] = -sz;
dest[1][1] = cx * cz;
dest[1][2] = cz * sx;
dest[2][0] = cz * sy;
dest[2][1] = -cysx + cxsy * sz;
dest[2][2] = cxcy + sxsy * sz;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
f_inline
void
glm_euler_yxz(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz, cycz, sysz, czsy, cysz;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
cycz = cy * cz;
sysz = sy * sz;
czsy = cz * sy;
cysz = cy * sz;
dest[0][0] = cycz + sx * sysz;
dest[0][1] = cx * sz;
dest[0][2] = -czsy + cysz * sx;
dest[1][0] = -cysz + czsy * sx;
dest[1][1] = cx * cz;
dest[1][2] = cycz * sx + sysz;
dest[2][0] = cx * sy;
dest[2][1] = -sx;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
f_inline
void
glm_euler_yzx(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz, sxsy, cxcy, cysx, cxsy;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
sxsy = sx * sy;
cxcy = cx * cy;
cysx = cy * sx;
cxsy = cx * sy;
dest[0][0] = cy * cz;
dest[0][1] = sz;
dest[0][2] = -cz * sy;
dest[1][0] = sxsy - cxcy * sz;
dest[1][1] = cx * cz;
dest[1][2] = cysx + cxsy * sz;
dest[2][0] = cxsy + cysx * sz;
dest[2][1] = -cz * sx;
dest[2][2] = cxcy - sxsy * sz;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
f_inline
void
glm_euler_zxy(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz, cycz, sxsy, cysz;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
cycz = cy * cz;
sxsy = sx * sy;
cysz = cy * sz;
dest[0][0] = cycz - sxsy * sz;
dest[0][1] = cz * sxsy + cysz;
dest[0][2] = -cx * sy;
dest[1][0] = -cx * sz;
dest[1][1] = cx * cz;
dest[1][2] = sx;
dest[2][0] = cz * sy + cysz * sx;
dest[2][1] = -cycz * sx + sy * sz;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
f_inline
void
glm_euler_zyx(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz, czsx, cxcz, sysz;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
czsx = cz * sx;
cxcz = cx * cz;
sysz = sy * sz;
dest[0][0] = cy * cz;
dest[0][1] = cy * sz;
dest[0][2] = -sy;
dest[1][0] = czsx * sy - cx * sz;
dest[1][1] = cxcz + sx * sysz;
dest[1][2] = cy * sx;
dest[2][0] = cxcz * sy + sx * sz;
dest[2][1] = -czsx + cx * sysz;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[in] ord euler order
* @param[out] dest rotation matrix
*/
f_inline
void
glm_euler_by_order(vec3 angles, glm_euler_seq ord, mat4 dest) {
float cx, cy, cz,
sx, sy, sz;
float cycz, cysz, cysx, cxcy,
czsy, cxcz, czsx, cxsz,
sysz;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
cycz = cy * cz; cysz = cy * sz;
cysx = cy * sx; cxcy = cx * cy;
czsy = cz * sy; cxcz = cx * cz;
czsx = cz * sx; cxsz = cx * sz;
sysz = sy * sz;
switch (ord) {
case GLM_EULER_XZY:
dest[0][0] = cycz;
dest[0][1] = sx * sy + cx * cysz;
dest[0][2] = -cx * sy + cysx * sz;
dest[1][0] = -sz;
dest[1][1] = cxcz;
dest[1][2] = czsx;
dest[2][0] = czsy;
dest[2][1] = -cysx + cx * sysz;
dest[2][2] = cxcy + sx * sysz;
break;
case GLM_EULER_XYZ:
dest[0][0] = cycz;
dest[0][1] = czsx * sy + cxsz;
dest[0][2] = -cx * czsy + sx * sz;
dest[1][0] = -cysz;
dest[1][1] = cxcz - sx * sysz;
dest[1][2] = czsx + cx * sysz;
dest[2][0] = sy;
dest[2][1] = -cysx;
dest[2][2] = cxcy;
break;
case GLM_EULER_YXZ:
dest[0][0] = cycz + sx * sysz;
dest[0][1] = cxsz;
dest[0][2] = -czsy + cysx * sz;
dest[1][0] = czsx * sy - cysz;
dest[1][1] = cxcz;
dest[1][2] = cycz * sx + sysz;
dest[2][0] = cx * sy;
dest[2][1] = -sx;
dest[2][2] = cxcy;
break;
case GLM_EULER_YZX:
dest[0][0] = cycz;
dest[0][1] = sz;
dest[0][2] = -czsy;
dest[1][0] = sx * sy - cx * cysz;
dest[1][1] = cxcz;
dest[1][2] = cysx + cx * sysz;
dest[2][0] = cx * sy + cysx * sz;
dest[2][1] = -czsx;
dest[2][2] = cxcy - sx * sysz;
break;
case GLM_EULER_ZXY:
dest[0][0] = cycz - sx * sysz;
dest[0][1] = czsx * sy + cysz;
dest[0][2] = -cx * sy;
dest[1][0] = -cxsz;
dest[1][1] = cxcz;
dest[1][2] = sx;
dest[2][0] = czsy + cysx * sz;
dest[2][1] = -cycz * sx + sysz;
dest[2][2] = cxcy;
break;
case GLM_EULER_ZYX:
dest[0][0] = cycz;
dest[0][1] = cysz;
dest[0][2] = -sy;
dest[1][0] = czsx * sy - cxsz;
dest[1][1] = cxcz + sx * sysz;
dest[1][2] = cysx;
dest[2][0] = cx * czsy + sx * sz;
dest[2][1] = -czsx + cx * sysz;
dest[2][2] = cxcy;
break;
}
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief apply transform to Axis-Aligned Bounding Box
*
* @param[in] box bounding box
* @param[in] m transform matrix
* @param[out] dest transformed bounding box
*/
f_inline
void
glm_aabb_transform(vec3 box[2], mat4 m, vec3 dest[2]) {
vec3 v[2], xa, xb, ya, yb, za, zb;
glm_vec3_scale(m[0], box[0][0], xa);
glm_vec3_scale(m[0], box[1][0], xb);
glm_vec3_scale(m[1], box[0][1], ya);
glm_vec3_scale(m[1], box[1][1], yb);
glm_vec3_scale(m[2], box[0][2], za);
glm_vec3_scale(m[2], box[1][2], zb);
/* translation + min(xa, xb) + min(ya, yb) + min(za, zb) */
glm_vec3(m[3], v[0]);
glm_vec3_minadd(xa, xb, v[0]);
glm_vec3_minadd(ya, yb, v[0]);
glm_vec3_minadd(za, zb, v[0]);
/* translation + max(xa, xb) + max(ya, yb) + max(za, zb) */
glm_vec3(m[3], v[1]);
glm_vec3_maxadd(xa, xb, v[1]);
glm_vec3_maxadd(ya, yb, v[1]);
glm_vec3_maxadd(za, zb, v[1]);
glm_vec3_copy(v[0], dest[0]);
glm_vec3_copy(v[1], dest[1]);
}
/*!
* @brief merges two AABB bounding box and creates new one
*
* two box must be in same space, if one of box is in different space then
* you should consider to convert it's space by glm_box_space
*
* @param[in] box1 bounding box 1
* @param[in] box2 bounding box 2
* @param[out] dest merged bounding box
*/
f_inline
void
glm_aabb_merge(vec3 box1[2], vec3 box2[2], vec3 dest[2]) {
dest[0][0] = glm_min(box1[0][0], box2[0][0]);
dest[0][1] = glm_min(box1[0][1], box2[0][1]);
dest[0][2] = glm_min(box1[0][2], box2[0][2]);
dest[1][0] = glm_max(box1[1][0], box2[1][0]);
dest[1][1] = glm_max(box1[1][1], box2[1][1]);
dest[1][2] = glm_max(box1[1][2], box2[1][2]);
}
/*!
* @brief crops a bounding box with another one.
*
* this could be useful for gettng a bbox which fits with view frustum and
* object bounding boxes. In this case you crop view frustum box with objects
* box
*
* @param[in] box bounding box 1
* @param[in] cropBox crop box
* @param[out] dest cropped bounding box
*/
f_inline
void
glm_aabb_crop(vec3 box[2], vec3 cropBox[2], vec3 dest[2]) {
dest[0][0] = glm_max(box[0][0], cropBox[0][0]);
dest[0][1] = glm_max(box[0][1], cropBox[0][1]);
dest[0][2] = glm_max(box[0][2], cropBox[0][2]);
dest[1][0] = glm_min(box[1][0], cropBox[1][0]);
dest[1][1] = glm_min(box[1][1], cropBox[1][1]);
dest[1][2] = glm_min(box[1][2], cropBox[1][2]);
}
/*!
* @brief crops a bounding box with another one.
*
* this could be useful for gettng a bbox which fits with view frustum and
* object bounding boxes. In this case you crop view frustum box with objects
* box
*
* @param[in] box bounding box
* @param[in] cropBox crop box
* @param[in] clampBox miniumum box
* @param[out] dest cropped bounding box
*/
f_inline
void
glm_aabb_crop_until(vec3 box[2],
vec3 cropBox[2],
vec3 clampBox[2],
vec3 dest[2]) {
glm_aabb_crop(box, cropBox, dest);
glm_aabb_merge(clampBox, dest, dest);
}
/*!
* @brief check if AABB intersects with frustum planes
*
* this could be useful for frustum culling using AABB.
*
* OPTIMIZATION HINT:
* if planes order is similar to LEFT, RIGHT, BOTTOM, TOP, NEAR, FAR
* then this method should run even faster because it would only use two
* planes if object is not inside the two planes
* fortunately cglm extracts planes as this order! just pass what you got!
*
* @param[in] box bounding box
* @param[in] planes frustum planes
*/
f_inline
byte
glm_aabb_frustum(vec3 box[2], vec4 planes[6]) {
float *p, dp;
int i;
for (i = 0; i < 6; i++) {
p = planes[i];
dp = p[0] * box[p[0] > 0.0f][0]
+ p[1] * box[p[1] > 0.0f][1]
+ p[2] * box[p[2] > 0.0f][2];
if (dp < -p[3])
return 0;
}
return 1;
}
/*!
* @brief invalidate AABB min and max values
*
* @param[in, out] box bounding box
*/
f_inline
void
glm_aabb_invalidate(vec3 box[2]) {
glm_vec3_broadcast(FLT_MAX, box[0]);
glm_vec3_broadcast(-FLT_MAX, box[1]);
}
/*!
* @brief check if AABB is valid or not
*
* @param[in] box bounding box
*/
f_inline
byte
glm_aabb_isvalid(vec3 box[2]) {
return glm_vec3_max(box[0]) != FLT_MAX
&& glm_vec3_min(box[1]) != -FLT_MAX;
}
/*!
* @brief distance between of min and max
*
* @param[in] box bounding box
*/
f_inline
float
glm_aabb_size(vec3 box[2]) {
return glm_vec3_distance(box[0], box[1]);
}
/*!
* @brief radius of sphere which surrounds AABB
*
* @param[in] box bounding box
*/
f_inline
float
glm_aabb_radius(vec3 box[2]) {
return glm_aabb_size(box) * 0.5f;
}
/*!
* @brief computes center point of AABB
*
* @param[in] box bounding box
* @param[out] dest center of bounding box
*/
f_inline
void
glm_aabb_center(vec3 box[2], vec3 dest) {
glm_vec3_center(box[0], box[1], dest);
}
/*!
* @brief check if two AABB intersects
*
* @param[in] box bounding box
* @param[in] other other bounding box
*/
f_inline
byte
glm_aabb_aabb(vec3 box[2], vec3 other[2]) {
return (box[0][0] <= other[1][0] && box[1][0] >= other[0][0])
&& (box[0][1] <= other[1][1] && box[1][1] >= other[0][1])
&& (box[0][2] <= other[1][2] && box[1][2] >= other[0][2]);
}
/*!
* @brief check if AABB intersects with sphere
*
* https://github.com/erich666/GraphicsGems/blob/master/gems/BoxSphere.c
* Solid Box - Solid Sphere test.
*
* Sphere Representation in cglm: [center.x, center.y, center.z, radii]
*
* @param[in] box solid bounding box
* @param[in] s solid sphere
*/
f_inline
byte
glm_aabb_sphere(vec3 box[2], vec4 s) {
float dmin;
int a, b, c;
a = (s[0] < box[0][0]) + (s[0] > box[1][0]);
b = (s[1] < box[0][1]) + (s[1] > box[1][1]);
c = (s[2] < box[0][2]) + (s[2] > box[1][2]);
dmin = glm_pow2((s[0] - box[!(a - 1)][0]) * (a != 0))
+ glm_pow2((s[1] - box[!(b - 1)][1]) * (b != 0))
+ glm_pow2((s[2] - box[!(c - 1)][2]) * (c != 0));
return dmin <= glm_pow2(s[3]);
}
/*!
* @brief check if point is inside of AABB
*
* @param[in] box bounding box
* @param[in] point point
*/
f_inline
byte
glm_aabb_point(vec3 box[2], vec3 point) {
return (point[0] >= box[0][0] && point[0] <= box[1][0])
&& (point[1] >= box[0][1] && point[1] <= box[1][1])
&& (point[2] >= box[0][2] && point[2] <= box[1][2]);
}
/*!
* @brief check if AABB contains other AABB
*
* @param[in] box bounding box
* @param[in] other other bounding box
*/
f_inline
byte
glm_aabb_contains(vec3 box[2], vec3 other[2]) {
return (box[0][0] <= other[0][0] && box[1][0] >= other[1][0])
&& (box[0][1] <= other[0][1] && box[1][1] >= other[1][1])
&& (box[0][2] <= other[0][2] && box[1][2] >= other[1][2]);
}
/*!
* @brief averages the color channels into one value
*
* @param[in] rgb RGB color
*/
f_inline
float
glm_luminance(vec3 rgb) {
vec3 l = {0.212671f, 0.715160f, 0.072169f};
return glm_dot(rgb, l);
}
/*!
* @brief maps the specified viewport coordinates into specified space [1]
* the matrix should contain projection matrix.
*
* if you don't have ( and don't want to have ) an inverse matrix then use
* glm_unproject version. You may use existing inverse of matrix in somewhere
* else, this is why glm_unprojecti exists to save save inversion cost
*
* [1] space:
* 1- if m = invProj: View Space
* 2- if m = invViewProj: World Space
* 3- if m = invMVP: Object Space
*
* You probably want to map the coordinates into object space
* so use invMVP as m
*
* Computing viewProj:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
* glm_mat4_inv(viewProj, invMVP);
*
* @param[in] pos point/position in viewport coordinates
* @param[in] invMat matrix (see brief)
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest unprojected coordinates
*/
f_inline
void
glm_unprojecti_no(vec3 pos, mat4 invMat, vec4 vp, vec3 dest) {
vec4 v;
v[0] = 2.0f * (pos[0] - vp[0]) / vp[2] - 1.0f;
v[1] = 2.0f * (pos[1] - vp[1]) / vp[3] - 1.0f;
v[2] = 2.0f * pos[2] - 1.0f;
v[3] = 1.0f;
glm_mat4_mulv(invMat, v, v);
glm_vec4_scale(v, 1.0f / v[3], v);
glm_vec3(v, dest);
}
/*!
* @brief map object coordinates to window coordinates
*
* Computing MVP:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
*
* @param[in] pos object coordinates
* @param[in] m MVP matrix
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest projected coordinates
*/
f_inline
void
glm_project_no(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
f_align(16) vec4 pos4;
glm_vec4(pos, 1.0f, pos4);
glm_mat4_mulv(m, pos4, pos4);
glm_vec4_scale(pos4, 1.0f / pos4[3], pos4); /* pos = pos / pos.w */
glm_vec4_scale(pos4, 0.5f, pos4);
glm_vec4_adds(pos4, 0.5f, pos4);
dest[0] = pos4[0] * vp[2] + vp[0];
dest[1] = pos4[1] * vp[3] + vp[1];
dest[2] = pos4[2];
}
/*!
* @brief map object's z coordinate to window coordinates
*
* Computing MVP:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
*
* @param[in] v object coordinates
* @param[in] m MVP matrix
*
* @returns projected z coordinate
*/
f_inline
float
glm_project_z_no(vec3 v, mat4 m) {
float z, w;
z = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2] + m[3][2];
w = m[0][3] * v[0] + m[1][3] * v[1] + m[2][3] * v[2] + m[3][3];
return 0.5f * (z / w) + 0.5f;
}
/*!
* @brief maps the specified viewport coordinates into specified space [1]
* the matrix should contain projection matrix.
*
* if you don't have ( and don't want to have ) an inverse matrix then use
* glm_unproject version. You may use existing inverse of matrix in somewhere
* else, this is why glm_unprojecti exists to save save inversion cost
*
* [1] space:
* 1- if m = invProj: View Space
* 2- if m = invViewProj: World Space
* 3- if m = invMVP: Object Space
*
* You probably want to map the coordinates into object space
* so use invMVP as m
*
* Computing viewProj:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
* glm_mat4_inv(viewProj, invMVP);
*
* @param[in] pos point/position in viewport coordinates
* @param[in] invMat matrix (see brief)
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest unprojected coordinates
*/
f_inline
void
glm_unprojecti(vec3 pos, mat4 invMat, vec4 vp, vec3 dest) {
#if CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_ZO_BIT
glm_unprojecti_zo(pos, invMat, vp, dest);
#elif CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_NO_BIT
glm_unprojecti_no(pos, invMat, vp, dest);
#endif
}
/*!
* @brief maps the specified viewport coordinates into specified space [1]
* the matrix should contain projection matrix.
*
* this is same as glm_unprojecti except this function get inverse matrix for
* you.
*
* [1] space:
* 1- if m = proj: View Space
* 2- if m = viewProj: World Space
* 3- if m = MVP: Object Space
*
* You probably want to map the coordinates into object space
* so use MVP as m
*
* Computing viewProj and MVP:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
*
* @param[in] pos point/position in viewport coordinates
* @param[in] m matrix (see brief)
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest unprojected coordinates
*/
f_inline
void
glm_unproject(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
mat4 inv;
glm_mat4_inv(m, inv);
glm_unprojecti(pos, inv, vp, dest);
}
/*!
* @brief map object coordinates to window coordinates
*
* Computing MVP:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
*
* @param[in] pos object coordinates
* @param[in] m MVP matrix
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest projected coordinates
*/
f_inline
void
glm_project(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
#if CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_ZO_BIT
glm_project_zo(pos, m, vp, dest);
#elif CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_NO_BIT
glm_project_no(pos, m, vp, dest);
#endif
}
/*!
* @brief map object's z coordinate to window coordinates
*
* Computing MVP:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
*
* @param[in] v object coordinates
* @param[in] m MVP matrix
*
* @returns projected z coordinate
*/
f_inline
float
glm_project_z(vec3 v, mat4 m) {
#if CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_ZO_BIT
return glm_project_z_zo(v, m);
#elif CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_NO_BIT
return glm_project_z_no(v, m);
#endif
}
/*!
* @brief define a picking region
*
* @param[in] center center [x, y] of a picking region in window coordinates
* @param[in] size size [width, height] of the picking region in window coordinates
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest projected coordinates
*/
f_inline
void
glm_pickmatrix(vec2 center, vec2 size, vec4 vp, mat4 dest) {
mat4 res;
vec3 v;
if (size[0] <= 0.0f || size[1] <= 0.0f)
return;
/* Translate and scale the picked region to the entire window */
v[0] = (vp[2] - 2.0f * (center[0] - vp[0])) / size[0];
v[1] = (vp[3] - 2.0f * (center[1] - vp[1])) / size[1];
v[2] = 0.0f;
glm_translate_make(res, v);
v[0] = vp[2] / size[0];
v[1] = vp[3] / size[1];
v[2] = 1.0f;
glm_scale(res, v);
glm_mat4_copy(res, dest);
}
/*
Sphere Representation in cglm: [center.x, center.y, center.z, radii]
You could use this representation or you can convert it to vec4 before call
any function
*/
/*!
* @brief helper for getting sphere radius
*
* @param[in] s sphere
*
* @return returns radii
*/
f_inline
float
glm_sphere_radii(vec4 s) {
return s[3];
}
/*!
* @brief apply transform to sphere, it is just wrapper for glm_mat4_mulv3
*
* @param[in] s sphere
* @param[in] m transform matrix
* @param[out] dest transformed sphere
*/
f_inline
void
glm_sphere_transform(vec4 s, mat4 m, vec4 dest) {
glm_mat4_mulv3(m, s, 1.0f, dest);
dest[3] = s[3];
}
/*!
* @brief merges two spheres and creates a new one
*
* two sphere must be in same space, for instance if one in world space then
* the other must be in world space too, not in local space.
*
* @param[in] s1 sphere 1
* @param[in] s2 sphere 2
* @param[out] dest merged/extended sphere
*/
f_inline
void
glm_sphere_merge(vec4 s1, vec4 s2, vec4 dest) {
float dist, radii;
dist = glm_vec3_distance(s1, s2);
radii = dist + s1[3] + s2[3];
radii = glm_max(radii, s1[3]);
radii = glm_max(radii, s2[3]);
glm_vec3_center(s1, s2, dest);
dest[3] = radii;
}
/*!
* @brief check if two sphere intersects
*
* @param[in] s1 sphere
* @param[in] s2 other sphere
*/
f_inline
byte
glm_sphere_sphere(vec4 s1, vec4 s2) {
return glm_vec3_distance2(s1, s2) <= glm_pow2(s1[3] + s2[3]);
}
/*!
* @brief check if sphere intersects with point
*
* @param[in] s sphere
* @param[in] point point
*/
f_inline
byte
glm_sphere_point(vec4 s, vec3 point) {
float rr;
rr = s[3] * s[3];
return glm_vec3_distance2(point, s) <= rr;
}
f_inline
float
glm_ease_linear(float t) {
return t;
}
f_inline
float
glm_ease_sine_in(float t) {
return sinf((t - 1.0f) * GLM_PI_2f) + 1.0f;
}
f_inline
float
glm_ease_sine_out(float t) {
return sinf(t * GLM_PI_2f);
}
f_inline
float
glm_ease_sine_inout(float t) {
return 0.5f * (1.0f - cosf(t * GLM_PIf));
}
f_inline
float
glm_ease_quad_in(float t) {
return t * t;
}
f_inline
float
glm_ease_quad_out(float t) {
return -(t * (t - 2.0f));
}
f_inline
float
glm_ease_quad_inout(float t) {
float tt;
tt = t * t;
if (t < 0.5f)
return 2.0f * tt;
return (-2.0f * tt) + (4.0f * t) - 1.0f;
}
f_inline
float
glm_ease_cubic_in(float t) {
return t * t * t;
}
f_inline
float
glm_ease_cubic_out(float t) {
float f;
f = t - 1.0f;
return f * f * f + 1.0f;
}
f_inline
float
glm_ease_cubic_inout(float t) {
float f;
if (t < 0.5f)
return 4.0f * t * t * t;
f = 2.0f * t - 2.0f;
return 0.5f * f * f * f + 1.0f;
}
f_inline
float
glm_ease_quart_in(float t) {
float f;
f = t * t;
return f * f;
}
f_inline
float
glm_ease_quart_out(float t) {
float f;
f = t - 1.0f;
return f * f * f * (1.0f - t) + 1.0f;
}
f_inline
float
glm_ease_quart_inout(float t) {
float f, g;
if (t < 0.5f) {
f = t * t;
return 8.0f * f * f;
}
f = t - 1.0f;
g = f * f;
return -8.0f * g * g + 1.0f;
}
f_inline
float
glm_ease_quint_in(float t) {
float f;
f = t * t;
return f * f * t;
}
f_inline
float
glm_ease_quint_out(float t) {
float f, g;
f = t - 1.0f;
g = f * f;
return g * g * f + 1.0f;
}
f_inline
float
glm_ease_quint_inout(float t) {
float f, g;
if (t < 0.5f) {
f = t * t;
return 16.0f * f * f * t;
}
f = 2.0f * t - 2.0f;
g = f * f;
return 0.5f * g * g * f + 1.0f;
}
f_inline
float
glm_ease_exp_in(float t) {
if (t == 0.0f)
return t;
return powf(2.0f, 10.0f * (t - 1.0f));
}
f_inline
float
glm_ease_exp_out(float t) {
if (t == 1.0f)
return t;
return 1.0f - powf(2.0f, -10.0f * t);
}
f_inline
float
glm_ease_exp_inout(float t) {
if (t == 0.0f || t == 1.0f)
return t;
if (t < 0.5f)
return 0.5f * powf(2.0f, (20.0f * t) - 10.0f);
return -0.5f * powf(2.0f, (-20.0f * t) + 10.0f) + 1.0f;
}
f_inline
float
glm_ease_circ_in(float t) {
return 1.0f - sqrtf(1.0f - (t * t));
}
f_inline
float
glm_ease_circ_out(float t) {
return sqrtf((2.0f - t) * t);
}
f_inline
float
glm_ease_circ_inout(float t) {
if (t < 0.5f)
return 0.5f * (1.0f - sqrtf(1.0f - 4.0f * (t * t)));
return 0.5f * (sqrtf(-((2.0f * t) - 3.0f) * ((2.0f * t) - 1.0f)) + 1.0f);
}
f_inline
float
glm_ease_back_in(float t) {
float o, z;
o = 1.70158f;
z = ((o + 1.0f) * t) - o;
return t * t * z;
}
f_inline
float
glm_ease_back_out(float t) {
float o, z, n;
o = 1.70158f;
n = t - 1.0f;
z = (o + 1.0f) * n + o;
return n * n * z + 1.0f;
}
f_inline
float
glm_ease_back_inout(float t) {
float o, z, n, m, s, x;
o = 1.70158f;
s = o * 1.525f;
x = 0.5;
n = t / 0.5f;
if (n < 1.0f) {
z = (s + 1) * n - s;
m = n * n * z;
return x * m;
}
n -= 2.0f;
z = (s + 1.0f) * n + s;
m = (n * n * z) + 2;
return x * m;
}
f_inline
float
glm_ease_elast_in(float t) {
return sinf(13.0f * GLM_PI_2f * t) * powf(2.0f, 10.0f * (t - 1.0f));
}
f_inline
float
glm_ease_elast_out(float t) {
return sinf(-13.0f * GLM_PI_2f * (t + 1.0f)) * powf(2.0f, -10.0f * t) + 1.0f;
}
f_inline
float
glm_ease_elast_inout(float t) {
float a;
a = 2.0f * t;
if (t < 0.5f)
return 0.5f * sinf(13.0f * GLM_PI_2f * a)
* powf(2.0f, 10.0f * (a - 1.0f));
return 0.5f * (sinf(-13.0f * GLM_PI_2f * a)
* powf(2.0f, -10.0f * (a - 1.0f)) + 2.0f);
}
f_inline
float
glm_ease_bounce_out(float t) {
float tt;
tt = t * t;
if (t < (4.0f / 11.0f))
return (121.0f * tt) / 16.0f;
if (t < 8.0f / 11.0f)
return ((363.0f / 40.0f) * tt) - ((99.0f / 10.0f) * t) + (17.0f / 5.0f);
if (t < (9.0f / 10.0f))
return (4356.0f / 361.0f) * tt
- (35442.0f / 1805.0f) * t
+ (16061.0f / 1805.0f);
return ((54.0f / 5.0f) * tt) - ((513.0f / 25.0f) * t) + (268.0f / 25.0f);
}
f_inline
float
glm_ease_bounce_in(float t) {
return 1.0f - glm_ease_bounce_out(1.0f - t);
}
f_inline
float
glm_ease_bounce_inout(float t) {
if (t < 0.5f)
return 0.5f * (1.0f - glm_ease_bounce_out(t * 2.0f));
return 0.5f * glm_ease_bounce_out(t * 2.0f - 1.0f) + 0.5f;
}
/*!
* @brief helper function to calculate S*M*C multiplication for curves
*
* This function does not encourage you to use SMC,
* instead it is a helper if you use SMC.
*
* if you want to specify S as vector then use more generic glm_mat4_rmc() func.
*
* Example usage:
* B(s) = glm_smc(s, GLM_BEZIER_MAT, (vec4){p0, c0, c1, p1})
*
* @param[in] s parameter between 0 and 1 (this will be [s3, s2, s, 1])
* @param[in] m basis matrix
* @param[in] c position/control vector
*
* @return B(s)
*/
f_inline
float
glm_smc(float s, mat4 m, vec4 c) {
vec4 vs;
glm_vec4_cubic(s, vs);
return glm_mat4_rmc(vs, m, c);
}
#define GLM_BEZIER_MAT_INIT {{-1.0f, 3.0f, -3.0f, 1.0f}, \
{ 3.0f, -6.0f, 3.0f, 0.0f}, \
{-3.0f, 3.0f, 0.0f, 0.0f}, \
{ 1.0f, 0.0f, 0.0f, 0.0f}}
#define GLM_HERMITE_MAT_INIT {{ 2.0f, -3.0f, 0.0f, 1.0f}, \
{-2.0f, 3.0f, 0.0f, 0.0f}, \
{ 1.0f, -2.0f, 1.0f, 0.0f}, \
{ 1.0f, -1.0f, 0.0f, 0.0f}}
/* for C only */
#define GLM_BEZIER_MAT ((mat4)GLM_BEZIER_MAT_INIT)
#define GLM_HERMITE_MAT ((mat4)GLM_HERMITE_MAT_INIT)
#define CGLM_DECASTEL_EPS 1e-9f
#define CGLM_DECASTEL_MAX 1000.0f
#define CGLM_DECASTEL_SMALL 1e-20f
/*!
* @brief cubic bezier interpolation
*
* Formula:
* B(s) = P0*(1-s)^3 + 3*C0*s*(1-s)^2 + 3*C1*s^2*(1-s) + P1*s^3
*
* similar result using matrix:
* B(s) = glm_smc(t, GLM_BEZIER_MAT, (vec4){p0, c0, c1, p1})
*
* glm_eq(glm_smc(...), glm_bezier(...)) should return TRUE
*
* @param[in] s parameter between 0 and 1
* @param[in] p0 begin point
* @param[in] c0 control point 1
* @param[in] c1 control point 2
* @param[in] p1 end point
*
* @return B(s)
*/
f_inline
float
glm_bezier(float s, float p0, float c0, float c1, float p1) {
float x, xx, ss, xs3, a;
x = 1.0f - s;
xx = x * x;
ss = s * s;
xs3 = (s - ss) * 3.0f;
a = p0 * xx + c0 * xs3;
return a + s * (c1 * xs3 + p1 * ss - a);
}
/*!
* @brief cubic hermite interpolation
*
* Formula:
* H(s) = P0*(2*s^3 - 3*s^2 + 1) + T0*(s^3 - 2*s^2 + s)
* + P1*(-2*s^3 + 3*s^2) + T1*(s^3 - s^2)
*
* similar result using matrix:
* H(s) = glm_smc(t, GLM_HERMITE_MAT, (vec4){p0, p1, c0, c1})
*
* glm_eq(glm_smc(...), glm_hermite(...)) should return TRUE
*
* @param[in] s parameter between 0 and 1
* @param[in] p0 begin point
* @param[in] t0 tangent 1
* @param[in] t1 tangent 2
* @param[in] p1 end point
*
* @return H(s)
*/
f_inline
float
glm_hermite(float s, float p0, float t0, float t1, float p1) {
float ss, d, a, b, c, e, f;
ss = s * s;
a = ss + ss;
c = a + ss;
b = a * s;
d = s * ss;
f = d - ss;
e = b - c;
return p0 * (e + 1.0f) + t0 * (f - ss + s) + t1 * f - p1 * e;
}
/*!
* @brief iterative way to solve cubic equation
*
* @param[in] prm parameter between 0 and 1
* @param[in] p0 begin point
* @param[in] c0 control point 1
* @param[in] c1 control point 2
* @param[in] p1 end point
*
* @return parameter to use in cubic equation
*/
f_inline
float
glm_decasteljau(float prm, float p0, float c0, float c1, float p1) {
float u, v, a, b, c, d, e, f;
int i;
if (prm - p0 < CGLM_DECASTEL_SMALL)
return 0.0f;
if (p1 - prm < CGLM_DECASTEL_SMALL)
return 1.0f;
u = 0.0f;
v = 1.0f;
for (i = 0; i < CGLM_DECASTEL_MAX; i++) {
/* de Casteljau Subdivision */
a = (p0 + c0) * 0.5f;
b = (c0 + c1) * 0.5f;
c = (c1 + p1) * 0.5f;
d = (a + b) * 0.5f;
e = (b + c) * 0.5f;
f = (d + e) * 0.5f; /* this one is on the curve! */
/* The curve point is close enough to our wanted t */
if (fabsf(f - prm) < CGLM_DECASTEL_EPS)
return glm_clamp_zo((u + v) * 0.5f);
/* dichotomy */
if (f < prm) {
p0 = f;
c0 = e;
c1 = c;
u = (u + v) * 0.5f;
} else {
c0 = a;
c1 = d;
p1 = f;
v = (u + v) * 0.5f;
}
}
return glm_clamp_zo((u + v) * 0.5f);
}
/*!
* @brief MöllerTrumbore ray-triangle intersection algorithm
*
* @param[in] origin origin of ray
* @param[in] direction direction of ray
* @param[in] v0 first vertex of triangle
* @param[in] v1 second vertex of triangle
* @param[in] v2 third vertex of triangle
* @param[in, out] d distance to intersection
* @return whether there is intersection
*/
f_inline
byte
glm_ray_triangle(vec3 origin,
vec3 direction,
vec3 v0,
vec3 v1,
vec3 v2,
float *d) {
vec3 edge1, edge2, p, t, q;
float det, inv_det, u, v, dist;
const float epsilon = 0.000001f;
glm_vec3_sub(v1, v0, edge1);
glm_vec3_sub(v2, v0, edge2);
glm_vec3_cross(direction, edge2, p);
det = glm_vec3_dot(edge1, p);
if (det > -epsilon && det < epsilon)
return 0;
inv_det = 1.0f / det;
glm_vec3_sub(origin, v0, t);
u = inv_det * glm_vec3_dot(t, p);
if (u < 0.0f || u > 1.0f)
return 0;
glm_vec3_cross(t, edge1, q);
v = inv_det * glm_vec3_dot(direction, q);
if (v < 0.0f || u + v > 1.0f)
return 0;
dist = inv_det * glm_vec3_dot(edge2, q);
if (d)
*d = dist;
return dist > epsilon;
}
/*!
* @brief translate existing 2d transform matrix by v vector
* and stores result in same matrix
*
* @param[in, out] m affine transfrom
* @param[in] v translate vector [x, y]
*/
f_inline
void
glm_translate2d(mat3 m, vec2 v) {
m[2][0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0];
m[2][1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1];
m[2][2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2];
}
/*!
* @brief translate existing 2d transform matrix by v vector
* and store result in dest
*
* source matrix will remain same
*
* @param[in] m affine transfrom
* @param[in] v translate vector [x, y]
* @param[out] dest translated matrix
*/
f_inline
void
glm_translate2d_to(mat3 m, vec2 v, mat3 dest) {
glm_mat3_copy(m, dest);
glm_translate2d(dest, v);
}
/*!
* @brief translate existing 2d transform matrix by x factor
*
* @param[in, out] m affine transfrom
* @param[in] x x factor
*/
f_inline
void
glm_translate2d_x(mat3 m, float x) {
m[2][0] = m[0][0] * x + m[2][0];
m[2][1] = m[0][1] * x + m[2][1];
m[2][2] = m[0][2] * x + m[2][2];
}
/*!
* @brief translate existing 2d transform matrix by y factor
*
* @param[in, out] m affine transfrom
* @param[in] y y factor
*/
f_inline
void
glm_translate2d_y(mat3 m, float y) {
m[2][0] = m[1][0] * y + m[2][0];
m[2][1] = m[1][1] * y + m[2][1];
m[2][2] = m[1][2] * y + m[2][2];
}
/*!
* @brief creates NEW translate 2d transform matrix by v vector
*
* @param[out] m affine transfrom
* @param[in] v translate vector [x, y]
*/
f_inline
void
glm_translate2d_make(mat3 m, vec2 v) {
glm_mat3_identity(m);
m[2][0] = v[0];
m[2][1] = v[1];
}
/*!
* @brief scale existing 2d transform matrix by v vector
* and store result in dest
*
* @param[in] m affine transfrom
* @param[in] v scale vector [x, y]
* @param[out] dest scaled matrix
*/
f_inline
void
glm_scale2d_to(mat3 m, vec2 v, mat3 dest) {
dest[0][0] = m[0][0] * v[0];
dest[0][1] = m[0][1] * v[0];
dest[0][2] = m[0][2] * v[0];
dest[1][0] = m[1][0] * v[1];
dest[1][1] = m[1][1] * v[1];
dest[1][2] = m[1][2] * v[1];
dest[2][0] = m[2][0];
dest[2][1] = m[2][1];
dest[2][2] = m[2][2];
}
/*!
* @brief creates NEW 2d scale matrix by v vector
*
* @param[out] m affine transfrom
* @param[in] v scale vector [x, y]
*/
f_inline
void
glm_scale2d_make(mat3 m, vec2 v) {
glm_mat3_identity(m);
m[0][0] = v[0];
m[1][1] = v[1];
}
/*!
* @brief scales existing 2d transform matrix by v vector
* and stores result in same matrix
*
* @param[in, out] m affine transfrom
* @param[in] v scale vector [x, y]
*/
f_inline
void
glm_scale2d(mat3 m, vec2 v) {
m[0][0] = m[0][0] * v[0];
m[0][1] = m[0][1] * v[0];
m[0][2] = m[0][2] * v[0];
m[1][0] = m[1][0] * v[1];
m[1][1] = m[1][1] * v[1];
m[1][2] = m[1][2] * v[1];
}
/*!
* @brief applies uniform scale to existing 2d transform matrix v = [s, s]
* and stores result in same matrix
*
* @param[in, out] m affine transfrom
* @param[in] s scale factor
*/
f_inline
void
glm_scale2d_uni(mat3 m, float s) {
m[0][0] = m[0][0] * s;
m[0][1] = m[0][1] * s;
m[0][2] = m[0][2] * s;
m[1][0] = m[1][0] * s;
m[1][1] = m[1][1] * s;
m[1][2] = m[1][2] * s;
}
/*!
* @brief creates NEW rotation matrix by angle around Z axis
*
* @param[out] m affine transfrom
* @param[in] angle angle (radians)
*/
f_inline
void
glm_rotate2d_make(mat3 m, float angle) {
float c, s;
s = sinf(angle);
c = cosf(angle);
m[0][0] = c;
m[0][1] = s;
m[0][2] = 0;
m[1][0] = -s;
m[1][1] = c;
m[1][2] = 0;
m[2][0] = 0.0f;
m[2][1] = 0.0f;
m[2][2] = 1.0f;
}
/*!
* @brief rotate existing 2d transform matrix around Z axis by angle
* and store result in same matrix
*
* @param[in, out] m affine transfrom
* @param[in] angle angle (radians)
*/
f_inline
void
glm_rotate2d(mat3 m, float angle) {
float m00 = m[0][0], m10 = m[1][0],
m01 = m[0][1], m11 = m[1][1],
m02 = m[0][2], m12 = m[1][2];
float c, s;
s = sinf(angle);
c = cosf(angle);
m[0][0] = m00 * c + m10 * s;
m[0][1] = m01 * c + m11 * s;
m[0][2] = m02 * c + m12 * s;
m[1][0] = m00 * -s + m10 * c;
m[1][1] = m01 * -s + m11 * c;
m[1][2] = m02 * -s + m12 * c;
}
/*!
* @brief rotate existing 2d transform matrix around Z axis by angle
* and store result in dest
*
* @param[in] m affine transfrom
* @param[in] angle angle (radians)
* @param[out] dest destination
*/
f_inline
void
glm_rotate2d_to(mat3 m, float angle, mat3 dest) {
float m00 = m[0][0], m10 = m[1][0],
m01 = m[0][1], m11 = m[1][1],
m02 = m[0][2], m12 = m[1][2];
float c, s;
s = sinf(angle);
c = cosf(angle);
dest[0][0] = m00 * c + m10 * s;
dest[0][1] = m01 * c + m11 * s;
dest[0][2] = m02 * c + m12 * s;
dest[1][0] = m00 * -s + m10 * c;
dest[1][1] = m01 * -s + m11 * c;
dest[1][2] = m02 * -s + m12 * c;
dest[2][0] = m[2][0];
dest[2][1] = m[2][1];
dest[2][2] = m[2][2];
}