/* -*-mode:java; c-basic-offset:2; indent-tabs-mode:nil -*- */ /* JOrbis * Copyright (C) 2000 ymnk, JCraft,Inc. * * Written by: 2000 ymnk * * Many thanks to * Monty and * The XIPHOPHORUS Company http://www.xiph.org/ . * JOrbis has been based on their awesome works, Vorbis codec. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public License * as published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ package client.audio.jorbis; import client.audio.jogg.Buffer; class StaticCodeBook{ int dim; // codebook dimensions (elements per vector) int entries; // codebook entries int[] lengthlist; // codeword lengths in bits // mapping int maptype; // 0=none // 1=implicitly populated values from map column // 2=listed arbitrary values // The below does a linear, single monotonic sequence mapping. int q_min; // packed 32 bit float; quant value 0 maps to minval int q_delta; // packed 32 bit float; val 1 - val 0 == delta int q_quant; // bits: 0 < quant <= 16 int q_sequencep; // bitflag // additional information for log (dB) mapping; the linear mapping // is assumed to actually be values in dB. encodebias is used to // assign an error weight to 0 dB. We have two additional flags: // zeroflag indicates if entry zero is to represent -Inf dB; negflag // indicates if we're to represent negative linear values in a // mirror of the positive mapping. int[] quantlist; // map == 1: (int)(entries/dim) element column map // map == 2: list of dim*entries quantized entry vals StaticCodeBook(){ } int pack(Buffer opb){ int i; boolean ordered=false; opb.write(0x564342, 24); opb.write(dim, 16); opb.write(entries, 24); // pack the codewords. There are two packings; length ordered and // length random. Decide between the two now. for(i=1; i_last){ for(int j=_last; j<_this; j++){ opb.write(i-count, Util.ilog(entries-count)); count=i; } } } opb.write(i-count, Util.ilog(entries-count)); } else{ // length random. Again, we don't code the codeword itself, just // the length. This time, though, we have to encode each length opb.write(0, 1); // unordered // algortihmic mapping has use for 'unused entries', which we tag // here. The algorithmic mapping happens as usual, but the unused // entry has no codeword. for(i=0; ientries/c->dim) quantized values for // building a full value list algorithmically (square lattice) quantvals=maptype1_quantvals(); break; case 2: // every value (c->entries*c->dim total) specified explicitly quantvals=entries*dim; break; } // quantized values for(i=0; ibim <= b->entries // treat the above as an initial guess while(true){ int acc=1; int acc1=1; for(int i=0; ientries){ return (vals); } else{ if(acc>entries){ vals--; } else{ vals++; } } } } void clear(){ } // unpack the quantized list of values for encode/decode // we need to deal with two map types: in map type 1, the values are // generated algorithmically (each column of the vector counts through // the values in the quant vector). in map type 2, all the values came // in in an explicit list. Both value lists must be unpacked float[] unquantize(){ if(maptype==1||maptype==2){ int quantvals; float mindel=float32_unpack(q_min); float delta=float32_unpack(q_delta); float[] r=new float[entries*dim]; // maptype 1 and 2 both use a quantized value vector, but // different sizes switch(maptype){ case 1: // most of the time, entries%dimensions == 0, but we need to be // well defined. We define that the possible vales at each // scalar is values == entries/dim. If entries%dim != 0, we'll // have 'too few' values (values*dim "+val+" | ");} val=Math.abs(val)*delta+mindel+last; if(q_sequencep!=0) last=val; r[j*dim+k]=val; //if((j*dim+k)==0){System.err.println(" $ r[0] -> "+r[0]+" | ");} } } //System.err.println("\nr[0]="+r[0]); } return (r); } return (null); } // 32 bit float (not IEEE; nonnormalized mantissa + // biased exponent) : neeeeeee eeemmmmm mmmmmmmm mmmmmmmm // Why not IEEE? It's just not that important here. static final int VQ_FEXP=10; static final int VQ_FMAN=21; static final int VQ_FEXP_BIAS=768; // bias toward values smaller than 1. // doesn't currently guard under/overflow static long float32_pack(float val){ int sign=0; int exp; int mant; if(val<0){ sign=0x80000000; val=-val; } exp=(int)Math.floor(Math.log(val)/Math.log(2)); mant=(int)Math.rint(Math.pow(val, (VQ_FMAN-1)-exp)); exp=(exp+VQ_FEXP_BIAS)<>>VQ_FMAN; if((val&0x80000000)!=0) mant=-mant; return (ldexp(mant, ((int)exp)-(VQ_FMAN-1)-VQ_FEXP_BIAS)); } static float ldexp(float foo, int e){ return (float)(foo*Math.pow(2, e)); } }